| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 16 |
|
|---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 18 |
|
|---|
| 19 | import weka.core.Attribute;
|
|---|
| 20 | import weka.core.Instance;
|
|---|
| 21 | import weka.core.Instances;
|
|---|
| 22 |
|
|---|
| 23 | /**
|
|---|
| 24 | * Standardization procedure after Watanabe et al.: Adapting a Fault Prediction Model to Allow Inter
|
|---|
| 25 | * Language Reuse. <br>
|
|---|
| 26 | * <br>
|
|---|
| 27 | * In comparison to Watanabe et al., we transform training data instead of the test data. Otherwise,
|
|---|
| 28 | * this approach would not be feasible with multiple projects.
|
|---|
| 29 | *
|
|---|
| 30 | * @author Steffen Herbold
|
|---|
| 31 | */
|
|---|
| 32 | public class AverageStandardization implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
|---|
| 33 |
|
|---|
| 34 | /**
|
|---|
| 35 | * Does not have parameters. String is ignored.
|
|---|
| 36 | *
|
|---|
| 37 | * @param parameters
|
|---|
| 38 | * ignored
|
|---|
| 39 | */
|
|---|
| 40 | @Override
|
|---|
| 41 | public void setParameter(String parameters) {
|
|---|
| 42 | // dummy
|
|---|
| 43 | }
|
|---|
| 44 |
|
|---|
| 45 | /**
|
|---|
| 46 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
|---|
| 47 | * org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 48 | */
|
|---|
| 49 | @Override
|
|---|
| 50 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 51 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 52 |
|
|---|
| 53 | final double[] meanTest = new double[testdata.numAttributes()];
|
|---|
| 54 |
|
|---|
| 55 | // get means of testdata
|
|---|
| 56 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 57 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 58 | meanTest[j] = testdata.meanOrMode(j);
|
|---|
| 59 | }
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | // preprocess training data
|
|---|
| 63 | for (Instances traindata : traindataSet) {
|
|---|
| 64 | double[] meanTrain = new double[testdata.numAttributes()];
|
|---|
| 65 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 66 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 67 | meanTrain[j] = traindata.meanOrMode(j);
|
|---|
| 68 | }
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 | for (int i = 0; i < traindata.numInstances(); i++) {
|
|---|
| 72 | Instance instance = traindata.instance(i);
|
|---|
| 73 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 74 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 75 | instance.setValue(j, instance.value(j) * meanTest[j] / meanTrain[j]);
|
|---|
| 76 | }
|
|---|
| 77 | }
|
|---|
| 78 | }
|
|---|
| 79 | }
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | /**
|
|---|
| 83 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
|---|
| 84 | * weka.core.Instances)
|
|---|
| 85 | */
|
|---|
| 86 | @Override
|
|---|
| 87 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 88 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 89 |
|
|---|
| 90 | final double[] meanTest = new double[testdata.numAttributes()];
|
|---|
| 91 |
|
|---|
| 92 | // get means of testdata
|
|---|
| 93 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 94 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 95 | meanTest[j] = testdata.meanOrMode(j);
|
|---|
| 96 | }
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | // preprocess training data
|
|---|
| 100 | final double[] meanTrain = new double[testdata.numAttributes()];
|
|---|
| 101 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 102 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 103 | meanTrain[j] = traindata.meanOrMode(j);
|
|---|
| 104 | }
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | for (int i = 0; i < traindata.numInstances(); i++) {
|
|---|
| 108 | Instance instance = traindata.instance(i);
|
|---|
| 109 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 110 | if (testdata.attribute(j) != classAttribute) {
|
|---|
| 111 | instance.setValue(j, instance.value(j) * meanTest[j] / meanTrain[j]);
|
|---|
| 112 | }
|
|---|
| 113 | }
|
|---|
| 114 | }
|
|---|
| 115 | }
|
|---|
| 116 |
|
|---|
| 117 | }
|
|---|