1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
18 |
|
---|
19 | import weka.core.Attribute;
|
---|
20 | import weka.core.Instance;
|
---|
21 | import weka.core.Instances;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Standardization procedure after Watanabe et al.: Adapting a Fault Prediction Model to Allow Inter
|
---|
25 | * Language Reuse. <br>
|
---|
26 | * <br>
|
---|
27 | * In comparison to Watanabe et al., we transform training data instead of the test data. Otherwise,
|
---|
28 | * this approach would not be feasible with multiple projects.
|
---|
29 | *
|
---|
30 | * @author Steffen Herbold
|
---|
31 | */
|
---|
32 | public class AverageStandardization implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * Does not have parameters. String is ignored.
|
---|
36 | *
|
---|
37 | * @param parameters
|
---|
38 | * ignored
|
---|
39 | */
|
---|
40 | @Override
|
---|
41 | public void setParameter(String parameters) {
|
---|
42 | // dummy
|
---|
43 | }
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
47 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
48 | */
|
---|
49 | @Override
|
---|
50 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
51 | final Attribute classAttribute = testdata.classAttribute();
|
---|
52 |
|
---|
53 | final double[] meanTest = new double[testdata.numAttributes()];
|
---|
54 |
|
---|
55 | // get means of testdata
|
---|
56 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
57 | if (testdata.attribute(j) != classAttribute) {
|
---|
58 | meanTest[j] = testdata.meanOrMode(j);
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | // preprocess training data
|
---|
63 | for (Instances traindata : traindataSet) {
|
---|
64 | double[] meanTrain = new double[testdata.numAttributes()];
|
---|
65 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
66 | if (testdata.attribute(j) != classAttribute) {
|
---|
67 | meanTrain[j] = traindata.meanOrMode(j);
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
72 | Instance instance = traindata.instance(i);
|
---|
73 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
74 | if (testdata.attribute(j) != classAttribute) {
|
---|
75 | instance.setValue(j, instance.value(j) * meanTest[j] / meanTrain[j]);
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | /**
|
---|
83 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
---|
84 | * weka.core.Instances)
|
---|
85 | */
|
---|
86 | @Override
|
---|
87 | public void apply(Instances testdata, Instances traindata) {
|
---|
88 | final Attribute classAttribute = testdata.classAttribute();
|
---|
89 |
|
---|
90 | final double[] meanTest = new double[testdata.numAttributes()];
|
---|
91 |
|
---|
92 | // get means of testdata
|
---|
93 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
94 | if (testdata.attribute(j) != classAttribute) {
|
---|
95 | meanTest[j] = testdata.meanOrMode(j);
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | // preprocess training data
|
---|
100 | final double[] meanTrain = new double[testdata.numAttributes()];
|
---|
101 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
102 | if (testdata.attribute(j) != classAttribute) {
|
---|
103 | meanTrain[j] = traindata.meanOrMode(j);
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
108 | Instance instance = traindata.instance(i);
|
---|
109 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
110 | if (testdata.attribute(j) != classAttribute) {
|
---|
111 | instance.setValue(j, instance.value(j) * meanTest[j] / meanTrain[j]);
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 |
|
---|
117 | }
|
---|