1 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
2 |
|
---|
3 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
4 |
|
---|
5 | import weka.core.Instance;
|
---|
6 | import weka.core.Instances;
|
---|
7 |
|
---|
8 | /**
|
---|
9 | * Sets the bias of the weights of the training data. By using a bias of 0.5 (default value) the total weight of the positive instances (i.e.
|
---|
10 | * fault-prone) is equal to the total weight of the negative instances (i.e. non-fault-prone). Otherwise the weights between the two will be
|
---|
11 | * distributed according to the bias, where <0.5 means in favor of the negative instances and >0.5 in favor of the positive instances.
|
---|
12 | * equal to the total weight of the test
|
---|
13 | * @author Steffen Herbold
|
---|
14 | */
|
---|
15 | public class BiasedWeights implements IProcessesingStrategy, ISetWiseProcessingStrategy {
|
---|
16 |
|
---|
17 | /**
|
---|
18 | * bias used for the weighting
|
---|
19 | */
|
---|
20 | private double bias = 0.5;
|
---|
21 |
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Sets the bias to be used for weighting.
|
---|
25 | * @param parameters string with the bias
|
---|
26 | */
|
---|
27 | @Override
|
---|
28 | public void setParameter(String parameters) {
|
---|
29 | bias = Double.parseDouble(parameters);
|
---|
30 | }
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances)
|
---|
34 | */
|
---|
35 | @Override
|
---|
36 | public void apply(Instances testdata, Instances traindata) {
|
---|
37 | //setBiasedWeights(testdata);
|
---|
38 | setBiasedWeights(traindata);
|
---|
39 | }
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
---|
43 | */
|
---|
44 | @Override
|
---|
45 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
46 | for( Instances traindata : traindataSet ) {
|
---|
47 | setBiasedWeights(traindata);
|
---|
48 | }
|
---|
49 | }
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * Helper method that sets the weights for a given data set.
|
---|
53 | * @param data data set whose weights are set
|
---|
54 | */
|
---|
55 | private void setBiasedWeights(Instances data) {
|
---|
56 | final int classIndex = data.classIndex();
|
---|
57 |
|
---|
58 | final int[] counts = data.attributeStats(classIndex).nominalCounts;
|
---|
59 |
|
---|
60 | final double weightNegatives = ((1-bias)*data.numInstances()) / counts[0];
|
---|
61 | final double weightPositives = (bias*data.numInstances()) / counts[1];
|
---|
62 |
|
---|
63 |
|
---|
64 | for( int i=0 ; i<data.numInstances() ; i++ ) {
|
---|
65 | Instance instance = data.instance(i);
|
---|
66 | if( instance.value(classIndex)==0 ) {
|
---|
67 | instance.setWeight(weightNegatives);
|
---|
68 | }
|
---|
69 | if( instance.value(classIndex)==1 ) {
|
---|
70 | instance.setWeight(weightPositives);
|
---|
71 | }
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 |
|
---|
76 |
|
---|
77 | }
|
---|