source: trunk/CrossPare/src/de/ugoe/cs/cpdp/dataprocessing/BiasedWeights.java @ 22

Last change on this file since 22 was 2, checked in by sherbold, 10 years ago
  • initial commit
  • Property svn:mime-type set to text/plain
File size: 2.4 KB
Line 
1package de.ugoe.cs.cpdp.dataprocessing;
2
3import org.apache.commons.collections4.list.SetUniqueList;
4
5import weka.core.Instance;
6import weka.core.Instances;
7
8/**
9 * Sets the bias of the weights of the training data. By using a bias of 0.5 (default value) the total weight of the positive instances (i.e.
10 * fault-prone) is equal to the total weight of the negative instances (i.e. non-fault-prone). Otherwise the weights between the two will be
11 * distributed according to the bias, where <0.5 means in favor of the negative instances and >0.5 in favor of the positive instances.
12 * equal to the total weight of the test
13 * @author Steffen Herbold
14 */
15public class BiasedWeights implements IProcessesingStrategy, ISetWiseProcessingStrategy {
16
17        /**
18         * bias used for the weighting
19         */
20        private double bias = 0.5;
21       
22       
23        /**
24         * Sets the bias to be used for weighting.
25         * @param parameters string with the bias
26         */
27        @Override
28        public void setParameter(String parameters) {
29                bias = Double.parseDouble(parameters);
30        }
31
32        /**
33         * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances)
34         */
35        @Override
36        public void apply(Instances testdata, Instances traindata) {
37                //setBiasedWeights(testdata);
38                setBiasedWeights(traindata);
39        }
40       
41        /**
42         * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList)
43         */
44        @Override
45        public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
46                for( Instances traindata : traindataSet ) {
47                        setBiasedWeights(traindata);
48                }
49        }
50       
51        /**
52         * Helper method that sets the weights for a given data set.
53         * @param data data set whose weights are set
54         */
55        private void setBiasedWeights(Instances data) {
56                final int classIndex = data.classIndex();
57               
58                final int[] counts = data.attributeStats(classIndex).nominalCounts;
59               
60                final double weightNegatives = ((1-bias)*data.numInstances()) / counts[0];
61                final double weightPositives = (bias*data.numInstances()) / counts[1];
62               
63               
64                for( int i=0 ; i<data.numInstances() ; i++ ) {
65                        Instance instance = data.instance(i);
66                        if( instance.value(classIndex)==0 ) {
67                                instance.setWeight(weightNegatives);
68                        }
69                        if( instance.value(classIndex)==1 ) {
70                                instance.setWeight(weightPositives);
71                        }
72                }
73        }
74
75       
76
77}
Note: See TracBrowser for help on using the repository browser.