1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
18 |
|
---|
19 | import weka.core.Instance;
|
---|
20 | import weka.core.Instances;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * Sets the bias of the weights of the training data. By using a bias of 0.5 (default value) the
|
---|
24 | * total weight of the positive instances (i.e. fault-prone) is equal to the total weight of the
|
---|
25 | * negative instances (i.e. non-fault-prone). Otherwise the weights between the two will be
|
---|
26 | * distributed according to the bias, where <0.5 means in favor of the negative instances and
|
---|
27 | * >0.5 in favor of the positive instances. equal to the total weight of the test
|
---|
28 | *
|
---|
29 | * @author Steffen Herbold
|
---|
30 | */
|
---|
31 | public class BiasedWeights implements IProcessesingStrategy, ISetWiseProcessingStrategy {
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * bias used for the weighting
|
---|
35 | */
|
---|
36 | private double bias = 0.5;
|
---|
37 |
|
---|
38 | /**
|
---|
39 | * Sets the bias to be used for weighting.
|
---|
40 | *
|
---|
41 | * @param parameters
|
---|
42 | * string with the bias
|
---|
43 | */
|
---|
44 | @Override
|
---|
45 | public void setParameter(String parameters) {
|
---|
46 | bias = Double.parseDouble(parameters);
|
---|
47 | }
|
---|
48 |
|
---|
49 | /**
|
---|
50 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
---|
51 | * weka.core.Instances)
|
---|
52 | */
|
---|
53 | @Override
|
---|
54 | public void apply(Instances testdata, Instances traindata) {
|
---|
55 | // setBiasedWeights(testdata);
|
---|
56 | setBiasedWeights(traindata);
|
---|
57 | }
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
61 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
62 | */
|
---|
63 | @Override
|
---|
64 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
65 | for (Instances traindata : traindataSet) {
|
---|
66 | setBiasedWeights(traindata);
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Helper method that sets the weights for a given data set.
|
---|
72 | *
|
---|
73 | * @param data
|
---|
74 | * data set whose weights are set
|
---|
75 | */
|
---|
76 | private void setBiasedWeights(Instances data) {
|
---|
77 | final int classIndex = data.classIndex();
|
---|
78 |
|
---|
79 | final int[] counts = data.attributeStats(classIndex).nominalCounts;
|
---|
80 |
|
---|
81 | final double weightNegatives = ((1 - bias) * data.numInstances()) / counts[0];
|
---|
82 | final double weightPositives = (bias * data.numInstances()) / counts[1];
|
---|
83 |
|
---|
84 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
85 | Instance instance = data.instance(i);
|
---|
86 | if (instance.value(classIndex) == 0) {
|
---|
87 | instance.setWeight(weightNegatives);
|
---|
88 | }
|
---|
89 | if (instance.value(classIndex) == 1) {
|
---|
90 | instance.setWeight(weightPositives);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | }
|
---|