[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[42] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import java.util.Iterator;
|
---|
| 18 | import java.util.SortedSet;
|
---|
| 19 | import java.util.TreeSet;
|
---|
| 20 | import java.util.logging.Level;
|
---|
| 21 |
|
---|
| 22 | import org.apache.commons.math3.stat.descriptive.rank.Median;
|
---|
| 23 |
|
---|
| 24 | import de.ugoe.cs.util.console.Console;
|
---|
| 25 | import weka.core.Instance;
|
---|
| 26 | import weka.core.Instances;
|
---|
| 27 |
|
---|
| 28 | /**
|
---|
| 29 | * <p>
|
---|
| 30 | * This processor implements the CLAMI strategy from the CLAMI paper at ASE 2014 be Nam et al. With
|
---|
| 31 | * CLAMI, the original classification of the data is removed and instead a new classification is
|
---|
| 32 | * created based on metric values that are higher than the median of the metric. Afterwards, a
|
---|
| 33 | * subset of the metrics is selected, where the violations of this median threshold is minimal.
|
---|
| 34 | * Finally, all instances where the metric violations are not correct are dropped, leaving
|
---|
| 35 | * noise-free data regarding the median threshold classification.
|
---|
| 36 | * </p>
|
---|
| 37 | * <p>
|
---|
| 38 | * This can also be done for the test data (i.e., TestAsTraining data selection), as the original
|
---|
| 39 | * classification is completely ignored. Hence, CLAMI is an approach for unsupervised learning.
|
---|
| 40 | * </p>
|
---|
| 41 | *
|
---|
| 42 | * @author Steffen Herbold
|
---|
| 43 | */
|
---|
| 44 | public class CLAMIProcessor implements IProcessesingStrategy {
|
---|
| 45 |
|
---|
| 46 | /*
|
---|
| 47 | * (non-Javadoc)
|
---|
| 48 | *
|
---|
| 49 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
| 50 | */
|
---|
| 51 | @Override
|
---|
| 52 | public void setParameter(String parameters) {
|
---|
[135] | 53 | // dummy, parameters not used
|
---|
[42] | 54 | }
|
---|
| 55 |
|
---|
| 56 | /*
|
---|
| 57 | * (non-Javadoc)
|
---|
| 58 | *
|
---|
| 59 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances,
|
---|
| 60 | * weka.core.Instances)
|
---|
| 61 | */
|
---|
| 62 | @Override
|
---|
| 63 | public void apply(Instances testdata, Instances traindata) {
|
---|
| 64 | applyCLAMI(testdata, traindata);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | /**
|
---|
| 68 | * <p>
|
---|
| 69 | * Applies the CLAMI processor to the data. The test data is also required, in order to
|
---|
| 70 | * guarantee a consistent metric set.
|
---|
| 71 | * </p>
|
---|
| 72 | *
|
---|
| 73 | * @param testdata
|
---|
| 74 | * test data; the data is not modified, only metrics are dropped
|
---|
| 75 | * @param data
|
---|
| 76 | * data to which the CLAMI processor is applied
|
---|
| 77 | */
|
---|
| 78 | public void applyCLAMI(Instances testdata, Instances data) {
|
---|
| 79 |
|
---|
| 80 | // first determine medians
|
---|
| 81 | double[] medians = new double[data.numAttributes()];
|
---|
| 82 | // get medians
|
---|
| 83 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 84 | if (j != data.classIndex()) {
|
---|
| 85 | medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1);
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | // now determine cluster number for each instance
|
---|
| 89 | double[] clusterNumber = new double[data.numInstances()];
|
---|
| 90 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 91 | int countHighValues = 0;
|
---|
| 92 | Instance currentInstance = data.get(i);
|
---|
| 93 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 94 | if (j != data.classIndex()) {
|
---|
| 95 | if (currentInstance.value(j) > medians[j]) {
|
---|
| 96 | countHighValues++;
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 | clusterNumber[i] = countHighValues;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | // determine median of cluster number
|
---|
| 104 | Median m = new Median();
|
---|
| 105 | double medianClusterNumber = m.evaluate(clusterNumber);
|
---|
| 106 |
|
---|
| 107 | // now we filter the metrics
|
---|
| 108 | int[] numMetricViolations = new int[data.numAttributes()];
|
---|
| 109 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 110 | int currentViolations = 0;
|
---|
| 111 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 112 | Instance currentInstance = data.get(i);
|
---|
| 113 | if (j != data.classIndex()) {
|
---|
| 114 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
| 115 | // "buggy"
|
---|
| 116 | if (currentInstance.value(j) <= medians[j]) {
|
---|
| 117 | currentViolations++;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | else {
|
---|
| 121 | // "not buggy"
|
---|
| 122 | if (currentInstance.value(j) > medians[j]) {
|
---|
| 123 | currentViolations++;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | numMetricViolations[j] = currentViolations;
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | SortedSet<Integer> distinctViolationCounts = new TreeSet<>();
|
---|
| 132 | for (int currentViolations : numMetricViolations) {
|
---|
| 133 | distinctViolationCounts.add(currentViolations);
|
---|
| 134 | }
|
---|
| 135 | Iterator<Integer> violationCountInterator = distinctViolationCounts.iterator();
|
---|
| 136 |
|
---|
| 137 | int violationCutoff = violationCountInterator.next();
|
---|
| 138 | // now we filter the data;
|
---|
[43] | 139 | // this is first tried with the metrics with fewest violations. if no buggy/bugfree
|
---|
| 140 | // instances remain, this is repeated with the next metrics with second fewest violations,
|
---|
| 141 | // and so on.
|
---|
| 142 | // this part is a bit unclear from the description in the paper, but I confirmed with the
|
---|
| 143 | // author that this is how they implemented it
|
---|
[42] | 144 | boolean[] cleanInstances = new boolean[data.numInstances()];
|
---|
| 145 | int numCleanBuggyInstances = 0;
|
---|
| 146 | int numCleanBugfreeInstances = 0;
|
---|
| 147 | do {
|
---|
| 148 | violationCutoff = violationCountInterator.next();
|
---|
| 149 | cleanInstances = new boolean[data.numInstances()];
|
---|
| 150 | numCleanBuggyInstances = 0;
|
---|
| 151 | numCleanBugfreeInstances = 0;
|
---|
| 152 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 153 | int currentViolations = 0;
|
---|
| 154 | Instance currentInstance = data.get(i);
|
---|
| 155 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
[43] | 156 | if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) {
|
---|
[42] | 157 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
| 158 | // "buggy"
|
---|
| 159 | if (currentInstance.value(j) <= medians[j]) {
|
---|
| 160 | currentViolations++;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | else {
|
---|
| 164 | // "not buggy"
|
---|
| 165 | if (currentInstance.value(j) > medians[j]) {
|
---|
| 166 | currentViolations++;
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | if (currentViolations == 0) {
|
---|
| 172 | cleanInstances[i] = true;
|
---|
| 173 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
| 174 | numCleanBuggyInstances++;
|
---|
| 175 | }
|
---|
| 176 | else {
|
---|
| 177 | numCleanBugfreeInstances++;
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 | else {
|
---|
| 181 | cleanInstances[i] = false;
|
---|
| 182 | }
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | while (numCleanBuggyInstances == 0 || numCleanBugfreeInstances == 0);
|
---|
[43] | 186 |
|
---|
[42] | 187 | // output some interesting information to provide insights into the CLAMI model
|
---|
| 188 | Console.traceln(Level.FINE, "Selected Metrics and Median-threshold: ");
|
---|
[43] | 189 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 190 | if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) {
|
---|
[42] | 191 | Console.traceln(Level.FINE, "\t" + data.attribute(j).name() + ": " + medians[j]);
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
[43] | 194 |
|
---|
[42] | 195 | // finally modify the instances
|
---|
| 196 | // drop the metrics (also from the testdata)
|
---|
| 197 | for (int j = data.numAttributes() - 1; j >= 0; j--) {
|
---|
[43] | 198 | if (j != data.classIndex() && numMetricViolations[j] != violationCutoff) {
|
---|
[42] | 199 | data.deleteAttributeAt(j);
|
---|
| 200 | testdata.deleteAttributeAt(j);
|
---|
| 201 | }
|
---|
| 202 | }
|
---|
| 203 | // drop the unclean instances
|
---|
| 204 | for (int i = data.numInstances() - 1; i >= 0; i--) {
|
---|
| 205 | if (!cleanInstances[i]) {
|
---|
| 206 | data.delete(i);
|
---|
| 207 | }
|
---|
| 208 | else {
|
---|
| 209 | // set the classification
|
---|
| 210 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
| 211 | data.get(i).setClassValue(1.0d);
|
---|
| 212 | }
|
---|
| 213 | else {
|
---|
| 214 | data.get(i).setClassValue(0.0d);
|
---|
| 215 | }
|
---|
| 216 | }
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | }
|
---|