1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import java.util.Iterator;
|
---|
18 | import java.util.SortedSet;
|
---|
19 | import java.util.TreeSet;
|
---|
20 | import java.util.logging.Level;
|
---|
21 |
|
---|
22 | import org.apache.commons.math3.stat.descriptive.rank.Median;
|
---|
23 |
|
---|
24 | import de.ugoe.cs.util.console.Console;
|
---|
25 | import weka.core.Instance;
|
---|
26 | import weka.core.Instances;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * <p>
|
---|
30 | * This processor implements the CLAMI strategy from the CLAMI paper at ASE 2014 be Nam et al. With
|
---|
31 | * CLAMI, the original classification of the data is removed and instead a new classification is
|
---|
32 | * created based on metric values that are higher than the median of the metric. Afterwards, a
|
---|
33 | * subset of the metrics is selected, where the violations of this median threshold is minimal.
|
---|
34 | * Finally, all instances where the metric violations are not correct are dropped, leaving
|
---|
35 | * noise-free data regarding the median threshold classification.
|
---|
36 | * </p>
|
---|
37 | * <p>
|
---|
38 | * This can also be done for the test data (i.e., TestAsTraining data selection), as the original
|
---|
39 | * classification is completely ignored. Hence, CLAMI is an approach for unsupervised learning.
|
---|
40 | * </p>
|
---|
41 | *
|
---|
42 | * @author Steffen Herbold
|
---|
43 | */
|
---|
44 | public class CLAMIProcessor implements IProcessesingStrategy {
|
---|
45 |
|
---|
46 | /*
|
---|
47 | * (non-Javadoc)
|
---|
48 | *
|
---|
49 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
50 | */
|
---|
51 | @Override
|
---|
52 | public void setParameter(String parameters) {
|
---|
53 | // TODO Auto-generated method stub
|
---|
54 |
|
---|
55 | }
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * (non-Javadoc)
|
---|
59 | *
|
---|
60 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances,
|
---|
61 | * weka.core.Instances)
|
---|
62 | */
|
---|
63 | @Override
|
---|
64 | public void apply(Instances testdata, Instances traindata) {
|
---|
65 | applyCLAMI(testdata, traindata);
|
---|
66 | }
|
---|
67 |
|
---|
68 | /**
|
---|
69 | * <p>
|
---|
70 | * Applies the CLAMI processor to the data. The test data is also required, in order to
|
---|
71 | * guarantee a consistent metric set.
|
---|
72 | * </p>
|
---|
73 | *
|
---|
74 | * @param testdata
|
---|
75 | * test data; the data is not modified, only metrics are dropped
|
---|
76 | * @param data
|
---|
77 | * data to which the CLAMI processor is applied
|
---|
78 | */
|
---|
79 | public void applyCLAMI(Instances testdata, Instances data) {
|
---|
80 |
|
---|
81 | // first determine medians
|
---|
82 | double[] medians = new double[data.numAttributes()];
|
---|
83 | // get medians
|
---|
84 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
85 | if (j != data.classIndex()) {
|
---|
86 | medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1);
|
---|
87 | }
|
---|
88 | }
|
---|
89 | // now determine cluster number for each instance
|
---|
90 | double[] clusterNumber = new double[data.numInstances()];
|
---|
91 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
92 | int countHighValues = 0;
|
---|
93 | Instance currentInstance = data.get(i);
|
---|
94 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
95 | if (j != data.classIndex()) {
|
---|
96 | if (currentInstance.value(j) > medians[j]) {
|
---|
97 | countHighValues++;
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|
101 | clusterNumber[i] = countHighValues;
|
---|
102 | }
|
---|
103 |
|
---|
104 | // determine median of cluster number
|
---|
105 | Median m = new Median();
|
---|
106 | double medianClusterNumber = m.evaluate(clusterNumber);
|
---|
107 |
|
---|
108 | // now we filter the metrics
|
---|
109 | int[] numMetricViolations = new int[data.numAttributes()];
|
---|
110 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
111 | int currentViolations = 0;
|
---|
112 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
113 | Instance currentInstance = data.get(i);
|
---|
114 | if (j != data.classIndex()) {
|
---|
115 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
116 | // "buggy"
|
---|
117 | if (currentInstance.value(j) <= medians[j]) {
|
---|
118 | currentViolations++;
|
---|
119 | }
|
---|
120 | }
|
---|
121 | else {
|
---|
122 | // "not buggy"
|
---|
123 | if (currentInstance.value(j) > medians[j]) {
|
---|
124 | currentViolations++;
|
---|
125 | }
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|
129 | numMetricViolations[j] = currentViolations;
|
---|
130 | }
|
---|
131 |
|
---|
132 | SortedSet<Integer> distinctViolationCounts = new TreeSet<>();
|
---|
133 | for (int currentViolations : numMetricViolations) {
|
---|
134 | distinctViolationCounts.add(currentViolations);
|
---|
135 | }
|
---|
136 | Iterator<Integer> violationCountInterator = distinctViolationCounts.iterator();
|
---|
137 |
|
---|
138 | int violationCutoff = violationCountInterator.next();
|
---|
139 | // now we filter the data;
|
---|
140 | // this is first tried with the metrics with fewest violations. if no buggy/bugfree
|
---|
141 | // instances remain, this is repeated with the next metrics with second fewest violations,
|
---|
142 | // and so on.
|
---|
143 | // this part is a bit unclear from the description in the paper, but I confirmed with the
|
---|
144 | // author that this is how they implemented it
|
---|
145 | boolean[] cleanInstances = new boolean[data.numInstances()];
|
---|
146 | int numCleanBuggyInstances = 0;
|
---|
147 | int numCleanBugfreeInstances = 0;
|
---|
148 | do {
|
---|
149 | violationCutoff = violationCountInterator.next();
|
---|
150 | cleanInstances = new boolean[data.numInstances()];
|
---|
151 | numCleanBuggyInstances = 0;
|
---|
152 | numCleanBugfreeInstances = 0;
|
---|
153 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
154 | int currentViolations = 0;
|
---|
155 | Instance currentInstance = data.get(i);
|
---|
156 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
157 | if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) {
|
---|
158 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
159 | // "buggy"
|
---|
160 | if (currentInstance.value(j) <= medians[j]) {
|
---|
161 | currentViolations++;
|
---|
162 | }
|
---|
163 | }
|
---|
164 | else {
|
---|
165 | // "not buggy"
|
---|
166 | if (currentInstance.value(j) > medians[j]) {
|
---|
167 | currentViolations++;
|
---|
168 | }
|
---|
169 | }
|
---|
170 | }
|
---|
171 | }
|
---|
172 | if (currentViolations == 0) {
|
---|
173 | cleanInstances[i] = true;
|
---|
174 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
175 | numCleanBuggyInstances++;
|
---|
176 | }
|
---|
177 | else {
|
---|
178 | numCleanBugfreeInstances++;
|
---|
179 | }
|
---|
180 | }
|
---|
181 | else {
|
---|
182 | cleanInstances[i] = false;
|
---|
183 | }
|
---|
184 | }
|
---|
185 | }
|
---|
186 | while (numCleanBuggyInstances == 0 || numCleanBugfreeInstances == 0);
|
---|
187 |
|
---|
188 | // output some interesting information to provide insights into the CLAMI model
|
---|
189 | Console.traceln(Level.FINE, "Selected Metrics and Median-threshold: ");
|
---|
190 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
191 | if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) {
|
---|
192 | Console.traceln(Level.FINE, "\t" + data.attribute(j).name() + ": " + medians[j]);
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 | // finally modify the instances
|
---|
197 | // drop the metrics (also from the testdata)
|
---|
198 | for (int j = data.numAttributes() - 1; j >= 0; j--) {
|
---|
199 | if (j != data.classIndex() && numMetricViolations[j] != violationCutoff) {
|
---|
200 | data.deleteAttributeAt(j);
|
---|
201 | testdata.deleteAttributeAt(j);
|
---|
202 | }
|
---|
203 | }
|
---|
204 | // drop the unclean instances
|
---|
205 | for (int i = data.numInstances() - 1; i >= 0; i--) {
|
---|
206 | if (!cleanInstances[i]) {
|
---|
207 | data.delete(i);
|
---|
208 | }
|
---|
209 | else {
|
---|
210 | // set the classification
|
---|
211 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
212 | data.get(i).setClassValue(1.0d);
|
---|
213 | }
|
---|
214 | else {
|
---|
215 | data.get(i).setClassValue(0.0d);
|
---|
216 | }
|
---|
217 | }
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | }
|
---|