1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import java.util.Arrays;
|
---|
18 |
|
---|
19 | import org.apache.commons.math3.stat.descriptive.rank.Median;
|
---|
20 |
|
---|
21 | import weka.core.Instance;
|
---|
22 | import weka.core.Instances;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * <p>
|
---|
26 | * This processor implements the CLA strategy from the CLAMI paper at ASE 2014 be Nam et al. With
|
---|
27 | * CLA, the original classification of the data is removed and instead a new classification is
|
---|
28 | * created based on metric values that are higher than the median of the metric.
|
---|
29 | * </p>
|
---|
30 | * <p>
|
---|
31 | * This can also be done for the test data (i.e., TestAsTraining data selection), as the original
|
---|
32 | * classification is completely ignored. Hence, CLA is an approach for unsupervised learning.
|
---|
33 | * </p>
|
---|
34 | *
|
---|
35 | * @author Steffen Herbold
|
---|
36 | */
|
---|
37 | public class CLAProcessor implements IProcessesingStrategy {
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * (non-Javadoc)
|
---|
41 | *
|
---|
42 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
43 | */
|
---|
44 | @Override
|
---|
45 | public void setParameter(String parameters) {
|
---|
46 | // TODO Auto-generated method stub
|
---|
47 |
|
---|
48 | }
|
---|
49 |
|
---|
50 | /*
|
---|
51 | * (non-Javadoc)
|
---|
52 | *
|
---|
53 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core. Instances,
|
---|
54 | * weka.core.Instances)
|
---|
55 | */
|
---|
56 | @Override
|
---|
57 | public void apply(Instances testdata, Instances traindata) {
|
---|
58 | applyCLA(traindata);
|
---|
59 | }
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * Applies the CLA processor the the data.
|
---|
63 | *
|
---|
64 | * @param data
|
---|
65 | * data to which the processor is applied
|
---|
66 | */
|
---|
67 | public void applyCLA(Instances data) {
|
---|
68 | // first determine medians
|
---|
69 | double[] medians = new double[data.numAttributes()];
|
---|
70 | // get medians
|
---|
71 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
72 | if (j != data.classIndex()) {
|
---|
73 | medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1);
|
---|
74 | }
|
---|
75 | }
|
---|
76 | // now determine cluster number for each instance
|
---|
77 | double[] clusterNumber = new double[data.numInstances()];
|
---|
78 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
79 | int countHighValues = 0;
|
---|
80 | Instance currentInstance = data.get(i);
|
---|
81 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
82 | if (j != data.classIndex()) {
|
---|
83 | if (currentInstance.value(j) > medians[j]) {
|
---|
84 | countHighValues++;
|
---|
85 | }
|
---|
86 | }
|
---|
87 | }
|
---|
88 | clusterNumber[i] = countHighValues;
|
---|
89 | }
|
---|
90 |
|
---|
91 | // determine median of cluster number
|
---|
92 | Median m = new Median();
|
---|
93 | double medianClusterNumber = m.evaluate(Arrays.stream(clusterNumber).distinct().toArray());
|
---|
94 |
|
---|
95 | // finally modify the instances
|
---|
96 | // drop the unclean instances
|
---|
97 | for (int i = data.numInstances() - 1; i >= 0; i--) {
|
---|
98 | // set the classification
|
---|
99 | if (clusterNumber[i] > medianClusterNumber) {
|
---|
100 | data.get(i).setClassValue(1.0d);
|
---|
101 | }
|
---|
102 | else {
|
---|
103 | data.get(i).setClassValue(0.0d);
|
---|
104 | }
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | }
|
---|