| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 16 |
|
|---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 18 |
|
|---|
| 19 | import weka.core.Attribute;
|
|---|
| 20 | import weka.core.Instance;
|
|---|
| 21 | import weka.core.Instances;
|
|---|
| 22 |
|
|---|
| 23 | /**
|
|---|
| 24 | * Logarithm transformation after Carmargo Cruz and Ochimizu: Towards Logistic Regression Models for
|
|---|
| 25 | * Predicting Fault-prone Code across Software Projects. <br>
|
|---|
| 26 | * <br>
|
|---|
| 27 | * Transform each attribute value x into log(x+1).
|
|---|
| 28 | *
|
|---|
| 29 | * @author Steffen Herbold
|
|---|
| 30 | */
|
|---|
| 31 | public class LogarithmTransform implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
|---|
| 32 |
|
|---|
| 33 | /**
|
|---|
| 34 | * Does not have parameters. String is ignored.
|
|---|
| 35 | *
|
|---|
| 36 | * @param parameters
|
|---|
| 37 | * ignored
|
|---|
| 38 | */
|
|---|
| 39 | @Override
|
|---|
| 40 | public void setParameter(String parameters) {
|
|---|
| 41 | // dummy
|
|---|
| 42 | }
|
|---|
| 43 |
|
|---|
| 44 | /**
|
|---|
| 45 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
|---|
| 46 | * org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 47 | */
|
|---|
| 48 | @Override
|
|---|
| 49 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 50 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 51 |
|
|---|
| 52 | // preprocess testdata
|
|---|
| 53 | for (int i = 0; i < testdata.numInstances(); i++) {
|
|---|
| 54 | Instance instance = testdata.instance(i);
|
|---|
| 55 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 56 | if (testdata.attribute(j) != classAttribute && testdata.attribute(j).isNumeric()) {
|
|---|
| 57 | if (instance.value(j) < 0) {
|
|---|
| 58 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
|---|
| 59 | }
|
|---|
| 60 | else {
|
|---|
| 61 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
|---|
| 62 | }
|
|---|
| 63 | }
|
|---|
| 64 | }
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | // preprocess training data
|
|---|
| 68 | for (Instances traindata : traindataSet) {
|
|---|
| 69 | for (int i = 0; i < traindata.numInstances(); i++) {
|
|---|
| 70 | Instance instance = traindata.instance(i);
|
|---|
| 71 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 72 | if (traindata.attribute(j) != classAttribute &&
|
|---|
| 73 | traindata.attribute(j).isNumeric())
|
|---|
| 74 | {
|
|---|
| 75 | if (instance.value(j) < 0) {
|
|---|
| 76 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
|---|
| 77 | }
|
|---|
| 78 | else {
|
|---|
| 79 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
|---|
| 80 | }
|
|---|
| 81 | }
|
|---|
| 82 | }
|
|---|
| 83 | }
|
|---|
| 84 | }
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | /**
|
|---|
| 88 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
|---|
| 89 | * weka.core.Instances)
|
|---|
| 90 | */
|
|---|
| 91 | @Override
|
|---|
| 92 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 93 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 94 |
|
|---|
| 95 | // preprocess testdata
|
|---|
| 96 | for (int i = 0; i < testdata.numInstances(); i++) {
|
|---|
| 97 | Instance instance = testdata.instance(i);
|
|---|
| 98 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 99 | if (testdata.attribute(j) != classAttribute && testdata.attribute(j).isNumeric()) {
|
|---|
| 100 | if (instance.value(j) < 0) {
|
|---|
| 101 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
|---|
| 102 | }
|
|---|
| 103 | else {
|
|---|
| 104 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
|---|
| 105 | }
|
|---|
| 106 | }
|
|---|
| 107 | }
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | // preprocess training data
|
|---|
| 111 | for (int i = 0; i < traindata.numInstances(); i++) {
|
|---|
| 112 | Instance instance = traindata.instance(i);
|
|---|
| 113 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
|---|
| 114 | if (traindata.attribute(j) != classAttribute && traindata.attribute(j).isNumeric())
|
|---|
| 115 | {
|
|---|
| 116 | if (instance.value(j) < 0) {
|
|---|
| 117 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
|---|
| 118 | }
|
|---|
| 119 | else {
|
|---|
| 120 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
|---|
| 121 | }
|
|---|
| 122 | }
|
|---|
| 123 | }
|
|---|
| 124 | }
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|