1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
18 |
|
---|
19 | import weka.core.Attribute;
|
---|
20 | import weka.core.Instance;
|
---|
21 | import weka.core.Instances;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Logarithm transformation after Carmargo Cruz and Ochimizu: Towards Logistic Regression Models for
|
---|
25 | * Predicting Fault-prone Code across Software Projects. <br>
|
---|
26 | * <br>
|
---|
27 | * Transform each attribute value x into log(x+1).
|
---|
28 | *
|
---|
29 | * @author Steffen Herbold
|
---|
30 | */
|
---|
31 | public class LogarithmTransform implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * Does not have parameters. String is ignored.
|
---|
35 | *
|
---|
36 | * @param parameters
|
---|
37 | * ignored
|
---|
38 | */
|
---|
39 | @Override
|
---|
40 | public void setParameter(String parameters) {
|
---|
41 | // dummy
|
---|
42 | }
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
46 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
47 | */
|
---|
48 | @Override
|
---|
49 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
50 | final Attribute classAttribute = testdata.classAttribute();
|
---|
51 |
|
---|
52 | // preprocess testdata
|
---|
53 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
54 | Instance instance = testdata.instance(i);
|
---|
55 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
56 | if (testdata.attribute(j) != classAttribute && testdata.attribute(j).isNumeric()) {
|
---|
57 | if (instance.value(j) < 0) {
|
---|
58 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
---|
59 | }
|
---|
60 | else {
|
---|
61 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
---|
62 | }
|
---|
63 | }
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | // preprocess training data
|
---|
68 | for (Instances traindata : traindataSet) {
|
---|
69 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
70 | Instance instance = traindata.instance(i);
|
---|
71 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
72 | if (traindata.attribute(j) != classAttribute &&
|
---|
73 | traindata.attribute(j).isNumeric())
|
---|
74 | {
|
---|
75 | if (instance.value(j) < 0) {
|
---|
76 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
---|
77 | }
|
---|
78 | else {
|
---|
79 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
---|
80 | }
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
---|
89 | * weka.core.Instances)
|
---|
90 | */
|
---|
91 | @Override
|
---|
92 | public void apply(Instances testdata, Instances traindata) {
|
---|
93 | final Attribute classAttribute = testdata.classAttribute();
|
---|
94 |
|
---|
95 | // preprocess testdata
|
---|
96 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
97 | Instance instance = testdata.instance(i);
|
---|
98 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
99 | if (testdata.attribute(j) != classAttribute && testdata.attribute(j).isNumeric()) {
|
---|
100 | if (instance.value(j) < 0) {
|
---|
101 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
---|
102 | }
|
---|
103 | else {
|
---|
104 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | // preprocess training data
|
---|
111 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
112 | Instance instance = traindata.instance(i);
|
---|
113 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
114 | if (traindata.attribute(j) != classAttribute && traindata.attribute(j).isNumeric())
|
---|
115 | {
|
---|
116 | if (instance.value(j) < 0) {
|
---|
117 | instance.setValue(j, (-1 * (Math.log(-1 * instance.value(j)))));
|
---|
118 | }
|
---|
119 | else {
|
---|
120 | instance.setValue(j, Math.log(1 + instance.value(j)));
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|