| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 16 |
|
|---|
| 17 | import java.security.InvalidParameterException;
|
|---|
| 18 | import java.util.Random;
|
|---|
| 19 |
|
|---|
| 20 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 21 | import org.apache.commons.math3.util.MathArrays;
|
|---|
| 22 |
|
|---|
| 23 | import weka.core.Instance;
|
|---|
| 24 | import weka.core.Instances;
|
|---|
| 25 |
|
|---|
| 26 | /**
|
|---|
| 27 | * Implements the MORPH data privatization.
|
|---|
| 28 | *
|
|---|
| 29 | *
|
|---|
| 30 | * @author Steffen Herbold
|
|---|
| 31 | */
|
|---|
| 32 | public class MORPH implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
|---|
| 33 |
|
|---|
| 34 | /**
|
|---|
| 35 | * random number generator for MORPH
|
|---|
| 36 | */
|
|---|
| 37 | Random rand = new Random();
|
|---|
| 38 |
|
|---|
| 39 | /**
|
|---|
| 40 | * parameter alpha for MORPH, default is 0.15
|
|---|
| 41 | */
|
|---|
| 42 | double alpha = 0.15;
|
|---|
| 43 |
|
|---|
| 44 | /**
|
|---|
| 45 | * parameter beta for MORPH, default is 0.35
|
|---|
| 46 | */
|
|---|
| 47 | double beta = 0.35;
|
|---|
| 48 |
|
|---|
| 49 | /**
|
|---|
| 50 | * Does not have parameters. String is ignored.
|
|---|
| 51 | *
|
|---|
| 52 | * @param parameters
|
|---|
| 53 | * ignored
|
|---|
| 54 | */
|
|---|
| 55 | @Override
|
|---|
| 56 | public void setParameter(String parameters) {
|
|---|
| 57 | if (parameters != null && !parameters.equals("")) {
|
|---|
| 58 | String[] values = parameters.split(" ");
|
|---|
| 59 | if( values.length!=2 ) {
|
|---|
| 60 | throw new InvalidParameterException("MORPH requires two doubles as parameter or no parameters to use default values");
|
|---|
| 61 | }
|
|---|
| 62 | try {
|
|---|
| 63 | alpha = Double.parseDouble(values[0]);
|
|---|
| 64 | beta = Double.parseDouble(values[1]);
|
|---|
| 65 | } catch(NumberFormatException e) {
|
|---|
| 66 | throw new InvalidParameterException("MORPH requires two doubles as parameter or no parameters to use default values");
|
|---|
| 67 | }
|
|---|
| 68 | }
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 | /**
|
|---|
| 72 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
|---|
| 73 | * org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 74 | */
|
|---|
| 75 | @Override
|
|---|
| 76 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 77 | for( Instances traindata : traindataSet ) {
|
|---|
| 78 | applyMORPH(traindata);
|
|---|
| 79 | }
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | /**
|
|---|
| 83 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
|---|
| 84 | * weka.core.Instances)
|
|---|
| 85 | */
|
|---|
| 86 | @Override
|
|---|
| 87 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 88 | applyMORPH(traindata);
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | /**
|
|---|
| 92 | *
|
|---|
| 93 | * <p>
|
|---|
| 94 | * Applies MORPH to the data
|
|---|
| 95 | * </p>
|
|---|
| 96 | *
|
|---|
| 97 | * @param data data to which the processor is applied
|
|---|
| 98 | */
|
|---|
| 99 | public void applyMORPH(Instances data) {
|
|---|
| 100 | for (int i=0; i<data.numInstances(); i++ ) {
|
|---|
| 101 | morphInstance(data.get(i), data);
|
|---|
| 102 | }
|
|---|
| 103 | }
|
|---|
| 104 |
|
|---|
| 105 | /**
|
|---|
| 106 | * <p>
|
|---|
| 107 | * Applies MORPH to a single instance
|
|---|
| 108 | * </p>
|
|---|
| 109 | *
|
|---|
| 110 | * @param instance instance that is morphed
|
|---|
| 111 | * @param data data based on which the instance is morphed
|
|---|
| 112 | */
|
|---|
| 113 | public void morphInstance(Instance instance, Instances data) {
|
|---|
| 114 | Instance nearestUnlikeNeighbor = getNearestUnlikeNeighbor(instance, data);
|
|---|
| 115 | if( nearestUnlikeNeighbor==null ) {
|
|---|
| 116 | throw new RuntimeException("could not find nearest unlike neighbor within the data: " + data.relationName());
|
|---|
| 117 | }
|
|---|
| 118 | for( int j=0; j<data.numAttributes() ; j++ ) {
|
|---|
| 119 | if( data.attribute(j)!=data.classAttribute() && data.attribute(j).isNumeric()) {
|
|---|
| 120 | double randVal = rand.nextDouble()*(beta-alpha)+alpha;
|
|---|
| 121 | instance.setValue(j, instance.value(j) + randVal*(instance.value(j)-nearestUnlikeNeighbor.value(j)) );
|
|---|
| 122 | }
|
|---|
| 123 | }
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | /**
|
|---|
| 127 | * <p>
|
|---|
| 128 | * Determines the nearest unlike neighbor of an instance.
|
|---|
| 129 | * </p>
|
|---|
| 130 | *
|
|---|
| 131 | * @param instance instance to which the nearest unlike neighbor is determined
|
|---|
| 132 | * @param data data where the nearest unlike neighbor is determined from
|
|---|
| 133 | * @return nearest unlike instance
|
|---|
| 134 | */
|
|---|
| 135 | public Instance getNearestUnlikeNeighbor(Instance instance, Instances data) {
|
|---|
| 136 | Instance nearestUnlikeNeighbor = null;
|
|---|
| 137 |
|
|---|
| 138 | double[] instanceVector = new double[data.numAttributes()-1];
|
|---|
| 139 | int tmp = 0;
|
|---|
| 140 | for( int j=0; j<data.numAttributes(); j++ ) {
|
|---|
| 141 | if( data.attribute(j)!=data.classAttribute() && data.attribute(j).isNumeric()) {
|
|---|
| 142 | instanceVector[tmp] = instance.value(j);
|
|---|
| 143 | }
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | double minDistance = Double.MAX_VALUE;
|
|---|
| 147 | for( int i=0 ; i<data.numInstances() ; i++ ) {
|
|---|
| 148 | if( instance.classValue() != data.instance(i).classValue() ) {
|
|---|
| 149 | double[] otherVector = new double[data.numAttributes() - 1];
|
|---|
| 150 | tmp = 0;
|
|---|
| 151 | for (int j = 0; j < data.numAttributes(); j++) {
|
|---|
| 152 | if (data.attribute(j) != data.classAttribute() && data.attribute(j).isNumeric()) {
|
|---|
| 153 | otherVector[tmp++] = data.instance(i).value(j);
|
|---|
| 154 | }
|
|---|
| 155 | }
|
|---|
| 156 | if( MathArrays.distance(instanceVector, otherVector)<minDistance) {
|
|---|
| 157 | minDistance = MathArrays.distance(instanceVector, otherVector);
|
|---|
| 158 | nearestUnlikeNeighbor = data.instance(i);
|
|---|
| 159 | }
|
|---|
| 160 | }
|
|---|
| 161 | }
|
|---|
| 162 | return nearestUnlikeNeighbor;
|
|---|
| 163 | }
|
|---|
| 164 | }
|
|---|