[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[2] | 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 |
|
---|
| 19 | import weka.core.Attribute;
|
---|
| 20 | import weka.core.Instance;
|
---|
| 21 | import weka.core.Instances;
|
---|
| 22 |
|
---|
| 23 | /**
|
---|
[41] | 24 | * Median as reference transformation after Carmargo Cruz and Ochimizu: Towards Logistic Regression
|
---|
| 25 | * Models for Predicting Fault-prone Code across Software Projects <br>
|
---|
| 26 | * <br>
|
---|
| 27 | * For each attribute value x, the new value is x + (median of the test data - median of the current
|
---|
| 28 | * project)
|
---|
| 29 | *
|
---|
[2] | 30 | * @author Steffen Herbold
|
---|
| 31 | */
|
---|
| 32 | public class MedianAsReference implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
---|
| 33 |
|
---|
[41] | 34 | /**
|
---|
| 35 | * Does not have parameters. String is ignored.
|
---|
| 36 | *
|
---|
| 37 | * @param parameters
|
---|
| 38 | * ignored
|
---|
| 39 | */
|
---|
| 40 | @Override
|
---|
| 41 | public void setParameter(String parameters) {
|
---|
| 42 | // dummy
|
---|
| 43 | }
|
---|
[2] | 44 |
|
---|
[41] | 45 | /**
|
---|
| 46 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
| 47 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 48 | */
|
---|
| 49 | @Override
|
---|
| 50 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 51 | final Attribute classAttribute = testdata.classAttribute();
|
---|
| 52 | final double[] median = new double[testdata.numAttributes()];
|
---|
[2] | 53 |
|
---|
[41] | 54 | // test and train have the same number of attributes
|
---|
| 55 | Attribute traindataClassAttribute;
|
---|
| 56 | double[] currentmedian = new double[testdata.numAttributes()];
|
---|
[40] | 57 |
|
---|
[41] | 58 | // get medians
|
---|
| 59 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
| 60 | if (testdata.attribute(j) != classAttribute) {
|
---|
| 61 | median[j] = testdata.kthSmallestValue(j, (testdata.numInstances() + 1) >> 1); // (>>2
|
---|
| 62 | // ->
|
---|
| 63 | // /2)
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
[40] | 66 |
|
---|
[41] | 67 | // preprocess training data
|
---|
| 68 | for (Instances traindata : traindataSet) {
|
---|
| 69 | // get median of current training set
|
---|
| 70 | traindataClassAttribute = traindata.classAttribute();
|
---|
| 71 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
| 72 | if (traindata.attribute(j) != traindataClassAttribute &&
|
---|
| 73 | traindata.attribute(j).isNumeric())
|
---|
| 74 | {
|
---|
| 75 | currentmedian[j] =
|
---|
| 76 | traindata.kthSmallestValue(j, (traindata.numInstances() + 1) >> 1); // (>>2
|
---|
| 77 | // ->
|
---|
| 78 | // /2)
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
| 82 | Instance instance = traindata.instance(i);
|
---|
| 83 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
| 84 | if (traindata.attribute(j) != classAttribute &&
|
---|
| 85 | traindata.attribute(j).isNumeric())
|
---|
| 86 | {
|
---|
| 87 | instance.setValue(j, instance.value(j) + (median[j] - currentmedian[j]));
|
---|
| 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | }
|
---|
[2] | 93 |
|
---|
[41] | 94 | /**
|
---|
| 95 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
---|
| 96 | * weka.core.Instances)
|
---|
| 97 | */
|
---|
| 98 | @Override
|
---|
| 99 | public void apply(Instances testdata, Instances traindata) {
|
---|
| 100 | final Attribute classAttribute = testdata.classAttribute();
|
---|
| 101 | final Attribute traindataClassAttribute = traindata.classAttribute();
|
---|
| 102 | final double[] median = new double[testdata.numAttributes()];
|
---|
| 103 |
|
---|
| 104 | // test and train have the same number of attributes
|
---|
| 105 | double[] currentmedian = new double[testdata.numAttributes()];
|
---|
| 106 |
|
---|
| 107 | // get medians
|
---|
| 108 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
| 109 | if (testdata.attribute(j) != classAttribute) {
|
---|
| 110 | median[j] = testdata.kthSmallestValue(j, (testdata.numInstances() + 1) >> 1); // (>>2
|
---|
| 111 | // ->
|
---|
| 112 | // /2)
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | // get median of current training set
|
---|
| 117 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
| 118 | if (traindata.attribute(j) != traindataClassAttribute &&
|
---|
| 119 | traindata.attribute(j).isNumeric())
|
---|
| 120 | {
|
---|
| 121 | currentmedian[j] =
|
---|
| 122 | traindata.kthSmallestValue(j, (traindata.numInstances() + 1) >> 1); // (>>2 ->
|
---|
| 123 | // /2)
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | // preprocess training data
|
---|
| 128 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
| 129 | Instance instance = traindata.instance(i);
|
---|
| 130 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
[135] | 131 | if (traindata.attribute(j) != classAttribute &&
|
---|
| 132 | traindata.attribute(j).isNumeric())
|
---|
[41] | 133 | {
|
---|
| 134 | instance.setValue(j, instance.value(j) + (median[j] - currentmedian[j]));
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 |
|
---|
[2] | 140 | }
|
---|