| 1 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 2 |
|
|---|
| 3 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 4 |
|
|---|
| 5 | import weka.core.Attribute;
|
|---|
| 6 | import weka.core.Instance;
|
|---|
| 7 | import weka.core.Instances;
|
|---|
| 8 |
|
|---|
| 9 | /**
|
|---|
| 10 | * Median as reference transformation after Carmargo Cruz and Ochimizu: Towards Logistic Regression Models for Predicting Fault-prone Code across Software Projects
|
|---|
| 11 | * <br><br>
|
|---|
| 12 | * For each attribute value x, the new value is x-median of the test data
|
|---|
| 13 | * @author Steffen Herbold
|
|---|
| 14 | */
|
|---|
| 15 | public class MedianAsReference implements ISetWiseProcessingStrategy, IProcessesingStrategy {
|
|---|
| 16 |
|
|---|
| 17 | /**
|
|---|
| 18 | * Does not have parameters. String is ignored.
|
|---|
| 19 | * @param parameters ignored
|
|---|
| 20 | */
|
|---|
| 21 | @Override
|
|---|
| 22 | public void setParameter(String parameters) {
|
|---|
| 23 | // dummy
|
|---|
| 24 | }
|
|---|
| 25 |
|
|---|
| 26 | /**
|
|---|
| 27 | * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 28 | */
|
|---|
| 29 | @Override
|
|---|
| 30 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 31 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 32 |
|
|---|
| 33 | final double[] median = new double[testdata.numAttributes()];
|
|---|
| 34 |
|
|---|
| 35 | // get medians
|
|---|
| 36 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 37 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 38 | median[j] = testdata.kthSmallestValue(j, (testdata.numInstances()+1)>>1); // (>>2 -> /2)
|
|---|
| 39 | }
|
|---|
| 40 | }
|
|---|
| 41 |
|
|---|
| 42 | // update testdata
|
|---|
| 43 | for( int i=0 ; i<testdata.numInstances() ; i++ ) {
|
|---|
| 44 | Instance instance = testdata.instance(i);
|
|---|
| 45 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 46 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 47 | instance.setValue(j, instance.value(j)-median[j]);
|
|---|
| 48 | }
|
|---|
| 49 | }
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 | // preprocess training data
|
|---|
| 53 | for( Instances traindata : traindataSet ) {
|
|---|
| 54 | for( int i=0 ; i<traindata.numInstances() ; i++ ) {
|
|---|
| 55 | Instance instance = traindata.instance(i);
|
|---|
| 56 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 57 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 58 | instance.setValue(j, instance.value(j)-median[j]);
|
|---|
| 59 | }
|
|---|
| 60 | }
|
|---|
| 61 | }
|
|---|
| 62 | }
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 | /**
|
|---|
| 66 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances)
|
|---|
| 67 | */
|
|---|
| 68 | @Override
|
|---|
| 69 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 70 | final Attribute classAttribute = testdata.classAttribute();
|
|---|
| 71 |
|
|---|
| 72 | final double[] median = new double[testdata.numAttributes()];
|
|---|
| 73 |
|
|---|
| 74 | // get medians
|
|---|
| 75 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 76 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 77 | median[j] = testdata.kthSmallestValue(j, (testdata.numInstances()+1)>>1); // (>>2 -> /2)
|
|---|
| 78 | }
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | // update testdata
|
|---|
| 82 | for( int i=0 ; i<testdata.numInstances() ; i++ ) {
|
|---|
| 83 | Instance instance = testdata.instance(i);
|
|---|
| 84 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 85 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 86 | instance.setValue(j, instance.value(j)-median[j]);
|
|---|
| 87 | }
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | // preprocess training data
|
|---|
| 92 | for( int i=0 ; i<traindata.numInstances() ; i++ ) {
|
|---|
| 93 | Instance instance = traindata.instance(i);
|
|---|
| 94 | for( int j=0 ; j<testdata.numAttributes() ; j++ ) {
|
|---|
| 95 | if( testdata.attribute(j)!=classAttribute ) {
|
|---|
| 96 | instance.setValue(j, instance.value(j)-median[j]);
|
|---|
| 97 | }
|
|---|
| 98 | }
|
|---|
| 99 | }
|
|---|
| 100 | }
|
|---|
| 101 |
|
|---|
| 102 | }
|
|---|