[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[51] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 |
|
---|
| 19 | import weka.core.Instance;
|
---|
| 20 | import weka.core.Instances;
|
---|
| 21 |
|
---|
| 22 | /**
|
---|
| 23 | * <p>
|
---|
| 24 | * Helper class for normalization of data sets.
|
---|
| 25 | * </p>
|
---|
| 26 | *
|
---|
| 27 | * @author Steffen Herbold
|
---|
| 28 | */
|
---|
| 29 | public class NormalizationUtil {
|
---|
| 30 |
|
---|
| 31 | /**
|
---|
| 32 | * <p>
|
---|
| 33 | * Min-Max normalization to scale all data to the interval [0,1] (N1 in Transfer Defect Learning
|
---|
| 34 | * by Nam et al.).
|
---|
| 35 | * </p>
|
---|
| 36 | *
|
---|
| 37 | * @param data
|
---|
| 38 | * data that is normalized
|
---|
| 39 | */
|
---|
| 40 | public static void minMax(Instances data) {
|
---|
| 41 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 42 | if (data.classIndex() != j) {
|
---|
| 43 | double min = data.attributeStats(j).numericStats.min;
|
---|
| 44 | double max = data.attributeStats(j).numericStats.max;
|
---|
| 45 |
|
---|
| 46 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 47 | Instance inst = data.instance(i);
|
---|
| 48 | double newValue = (inst.value(j) - min) / (max - min);
|
---|
| 49 | inst.setValue(j, newValue);
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | /**
|
---|
| 56 | * <p>
|
---|
| 57 | * Z-Score normalization (N2 in Transfer Defect Learning by Nam et al.).
|
---|
| 58 | * </p>
|
---|
| 59 | *
|
---|
| 60 | * @param data
|
---|
| 61 | * data that is normalized
|
---|
| 62 | */
|
---|
| 63 | public static void zScore(Instances data) {
|
---|
| 64 | final double[] mean = new double[data.numAttributes()];
|
---|
| 65 | final double[] std = new double[data.numAttributes()];
|
---|
| 66 |
|
---|
| 67 | // get means and stddevs of data
|
---|
| 68 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 69 | if (data.classIndex() != j) {
|
---|
| 70 | mean[j] = data.meanOrMode(j);
|
---|
| 71 | std[j] = Math.sqrt(data.variance(j));
|
---|
| 72 | }
|
---|
| 73 | }
|
---|
| 74 | applyZScore(data, mean, std);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | /**
|
---|
| 78 | * <p>
|
---|
| 79 | * Z-Score normalization using the mean and std of the training data (N3 in Transfer Defect
|
---|
| 80 | * Learning by Nam et al.).
|
---|
| 81 | * </p>
|
---|
| 82 | *
|
---|
| 83 | * @param testdata
|
---|
| 84 | * test data of the target product
|
---|
| 85 | * @param traindata
|
---|
| 86 | * training data
|
---|
| 87 | */
|
---|
| 88 | public static void zScoreTraining(Instances testdata, Instances traindata) {
|
---|
| 89 | final double[] mean = new double[testdata.numAttributes()];
|
---|
| 90 | final double[] std = new double[testdata.numAttributes()];
|
---|
| 91 |
|
---|
| 92 | // get means of training
|
---|
| 93 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
| 94 | if (traindata.classIndex() != j) {
|
---|
| 95 | mean[j] = traindata.meanOrMode(j);
|
---|
| 96 | std[j] = Math.sqrt(traindata.variance(j));
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | applyZScore(testdata, mean, std);
|
---|
| 101 | applyZScore(traindata, mean, std);
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | /**
|
---|
| 105 | * <p>
|
---|
| 106 | * Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning
|
---|
| 107 | * by Nam et al.).
|
---|
| 108 | * </p>
|
---|
| 109 | *
|
---|
| 110 | * @param testdata
|
---|
| 111 | * test data of the target product
|
---|
| 112 | * @param traindata
|
---|
| 113 | * training data
|
---|
| 114 | */
|
---|
| 115 | public static void zScoreTarget(Instances testdata, Instances traindata) {
|
---|
| 116 | final double[] mean = new double[testdata.numAttributes()];
|
---|
| 117 | final double[] std = new double[testdata.numAttributes()];
|
---|
| 118 |
|
---|
| 119 | // get means of testdata
|
---|
| 120 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
| 121 | if (testdata.classIndex() != j) {
|
---|
| 122 | mean[j] = testdata.meanOrMode(j);
|
---|
| 123 | std[j] = Math.sqrt(testdata.variance(j));
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | applyZScore(testdata, mean, std);
|
---|
| 128 | applyZScore(traindata, mean, std);
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | /**
|
---|
| 132 | * <p>
|
---|
| 133 | * Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning
|
---|
| 134 | * by Nam et al.).
|
---|
| 135 | * </p>
|
---|
| 136 | *
|
---|
| 137 | * @param testdata
|
---|
| 138 | * test data of the target product
|
---|
[136] | 139 | * @param traindataSet
|
---|
[51] | 140 | * training data
|
---|
| 141 | */
|
---|
| 142 | public static void zScoreTarget(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 143 | final double[] mean = new double[testdata.numAttributes()];
|
---|
| 144 | final double[] std = new double[testdata.numAttributes()];
|
---|
| 145 |
|
---|
| 146 | // get means of testdata
|
---|
| 147 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
| 148 | if (testdata.classIndex() != j) {
|
---|
| 149 | mean[j] = testdata.meanOrMode(j);
|
---|
| 150 | std[j] = Math.sqrt(testdata.variance(j));
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | applyZScore(testdata, mean, std);
|
---|
| 155 | for (Instances traindata : traindataSet) {
|
---|
| 156 | applyZScore(traindata, mean, std);
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | /**
|
---|
| 161 | * <p>
|
---|
| 162 | * Internal helper function
|
---|
| 163 | * </p>
|
---|
| 164 | */
|
---|
| 165 | private static void applyZScore(Instances data, double[] mean, double[] std) {
|
---|
| 166 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 167 | Instance instance = data.instance(i);
|
---|
| 168 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 169 | if (data.classIndex() != j) {
|
---|
| 170 | instance.setValue(j, instance.value(j) - mean[j] / std[j]);
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 | }
|
---|
| 175 | }
|
---|