[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[38] | 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 |
|
---|
| 19 | import weka.core.Instances;
|
---|
| 20 | import weka.filters.Filter;
|
---|
| 21 | import weka.filters.supervised.instance.Resample;
|
---|
| 22 |
|
---|
| 23 | /**
|
---|
[41] | 24 | * Implements oversampling, a strategy for handling bias in data. In case there are less positive
|
---|
| 25 | * samples (i.e. defect-prone) samples in the data than negative samples (i.e. non-defect-prone),
|
---|
| 26 | * the defect-prone entities are over-sampled such that the number of defect-prone and
|
---|
| 27 | * non-defect-prone instances is the same afterwards. This means, that some of the defect-prone
|
---|
| 28 | * entities will be more than once within the data.
|
---|
[38] | 29 | *
|
---|
| 30 | * @author Steffen Herbold
|
---|
| 31 | */
|
---|
[41] | 32 | public class Oversampling implements IProcessesingStrategy, ISetWiseProcessingStrategy {
|
---|
[38] | 33 |
|
---|
[41] | 34 | /**
|
---|
| 35 | * Does not have parameters. String is ignored.
|
---|
| 36 | *
|
---|
| 37 | * @param parameters
|
---|
| 38 | * ignored
|
---|
| 39 | */
|
---|
| 40 | @Override
|
---|
| 41 | public void setParameter(String parameters) {
|
---|
| 42 | // dummy
|
---|
| 43 | }
|
---|
[38] | 44 |
|
---|
[41] | 45 | /*
|
---|
| 46 | * (non-Javadoc)
|
---|
| 47 | *
|
---|
| 48 | * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka. core.Instances,
|
---|
| 49 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 50 | */
|
---|
| 51 | @Override
|
---|
| 52 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 53 | for (Instances traindata : traindataSet) {
|
---|
| 54 | apply(testdata, traindata);
|
---|
| 55 | }
|
---|
| 56 | }
|
---|
[38] | 57 |
|
---|
[41] | 58 | /*
|
---|
| 59 | * (non-Javadoc)
|
---|
| 60 | *
|
---|
| 61 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core. Instances,
|
---|
| 62 | * weka.core.Instances)
|
---|
| 63 | */
|
---|
| 64 | @Override
|
---|
| 65 | public void apply(Instances testdata, Instances traindata) {
|
---|
[38] | 66 |
|
---|
[41] | 67 | final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts;
|
---|
| 68 | if (counts[1] < counts[0]) {
|
---|
| 69 | Instances negatives = new Instances(traindata);
|
---|
| 70 | Instances positives = new Instances(traindata);
|
---|
[38] | 71 |
|
---|
[41] | 72 | for (int i = traindata.size() - 1; i >= 0; i--) {
|
---|
| 73 | if (Double.compare(1.0, negatives.get(i).classValue()) == 0) {
|
---|
| 74 | negatives.remove(i);
|
---|
| 75 | }
|
---|
| 76 | if (Double.compare(0.0, positives.get(i).classValue()) == 0) {
|
---|
| 77 | positives.remove(i);
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
[38] | 80 |
|
---|
[41] | 81 | Resample resample = new Resample();
|
---|
| 82 | resample.setSampleSizePercent((100.0 * counts[0]) / counts[1]);
|
---|
| 83 | try {
|
---|
| 84 | resample.setInputFormat(traindata);
|
---|
| 85 | positives = Filter.useFilter(positives, resample);
|
---|
| 86 | }
|
---|
| 87 | catch (Exception e) {
|
---|
| 88 | throw new RuntimeException(e);
|
---|
| 89 | }
|
---|
| 90 | traindata.clear();
|
---|
| 91 | for (int i = 0; i < negatives.size(); i++) {
|
---|
| 92 | traindata.add(negatives.get(i));
|
---|
| 93 | }
|
---|
| 94 | for (int i = 0; i < positives.size(); i++) {
|
---|
| 95 | traindata.add(positives.get(i));
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
[38] | 99 |
|
---|
| 100 | }
|
---|