| 1 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 2 |
|
|---|
| 3 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 4 |
|
|---|
| 5 | import weka.core.Instances;
|
|---|
| 6 | import weka.filters.Filter;
|
|---|
| 7 | import weka.filters.supervised.instance.Resample;
|
|---|
| 8 |
|
|---|
| 9 | /**
|
|---|
| 10 | * Implements oversampling, a strategy for
|
|---|
| 11 | * handling bias in data. In case there are less positive samples (i.e.
|
|---|
| 12 | * defect-prone) samples in the data than negative samples (i.e.
|
|---|
| 13 | * non-defect-prone), the defect-prone entities are over-sampled such that the
|
|---|
| 14 | * number of defect-prone and non-defect-prone instances is the same afterwards.
|
|---|
| 15 | * This means, that some of the defect-prone entities will be more than once
|
|---|
| 16 | * within the data.
|
|---|
| 17 | *
|
|---|
| 18 | * @author Steffen Herbold
|
|---|
| 19 | */
|
|---|
| 20 | public class Oversampling implements IProcessesingStrategy,
|
|---|
| 21 | ISetWiseProcessingStrategy {
|
|---|
| 22 |
|
|---|
| 23 | /**
|
|---|
| 24 | * Does not have parameters. String is ignored.
|
|---|
| 25 | *
|
|---|
| 26 | * @param parameters
|
|---|
| 27 | * ignored
|
|---|
| 28 | */
|
|---|
| 29 | @Override
|
|---|
| 30 | public void setParameter(String parameters) {
|
|---|
| 31 | // dummy
|
|---|
| 32 | }
|
|---|
| 33 |
|
|---|
| 34 | /*
|
|---|
| 35 | * (non-Javadoc)
|
|---|
| 36 | *
|
|---|
| 37 | * @see
|
|---|
| 38 | * de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.
|
|---|
| 39 | * core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 40 | */
|
|---|
| 41 | @Override
|
|---|
| 42 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 43 | for (Instances traindata : traindataSet) {
|
|---|
| 44 | apply(testdata, traindata);
|
|---|
| 45 | }
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 | /*
|
|---|
| 49 | * (non-Javadoc)
|
|---|
| 50 | *
|
|---|
| 51 | * @see
|
|---|
| 52 | * de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.
|
|---|
| 53 | * Instances, weka.core.Instances)
|
|---|
| 54 | */
|
|---|
| 55 | @Override
|
|---|
| 56 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 57 |
|
|---|
| 58 | final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts;
|
|---|
| 59 | if (counts[1] < counts[0]) {
|
|---|
| 60 | Instances negatives = new Instances(traindata);
|
|---|
| 61 | Instances positives = new Instances(traindata);
|
|---|
| 62 |
|
|---|
| 63 | for (int i = traindata.size() - 1; i >= 0; i--) {
|
|---|
| 64 | if (Double.compare(1.0, negatives.get(i).classValue()) == 0) {
|
|---|
| 65 | negatives.remove(i);
|
|---|
| 66 | }
|
|---|
| 67 | if (Double.compare(0.0, positives.get(i).classValue()) == 0) {
|
|---|
| 68 | positives.remove(i);
|
|---|
| 69 | }
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | Resample resample = new Resample();
|
|---|
| 73 | // TODO: resample.setSampleSizePercent((100.0*counts[1])/100+0.01);
|
|---|
| 74 | // Ohne +0.01 wird bei tomcat, xerces-1.2 und jedit-4.0 ein negative
|
|---|
| 75 | // weniger zurückgegeben
|
|---|
| 76 | resample.setSampleSizePercent((100.0 * counts[0]) / counts[1]);
|
|---|
| 77 | try {
|
|---|
| 78 | resample.setInputFormat(traindata);
|
|---|
| 79 | positives = Filter.useFilter(positives, resample);
|
|---|
| 80 | } catch (Exception e) {
|
|---|
| 81 | throw new RuntimeException(e);
|
|---|
| 82 | }
|
|---|
| 83 | traindata.clear();
|
|---|
| 84 | for (int i = 0; i < negatives.size(); i++) {
|
|---|
| 85 | traindata.add(negatives.get(i));
|
|---|
| 86 | }
|
|---|
| 87 | for (int i = 0; i < positives.size(); i++) {
|
|---|
| 88 | traindata.add(positives.get(i));
|
|---|
| 89 | }
|
|---|
| 90 | }
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | }
|
|---|