1 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
2 |
|
---|
3 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
4 |
|
---|
5 | import weka.core.Instances;
|
---|
6 | import weka.filters.Filter;
|
---|
7 | import weka.filters.supervised.instance.Resample;
|
---|
8 |
|
---|
9 | /**
|
---|
10 | * Implements oversampling, a strategy for
|
---|
11 | * handling bias in data. In case there are less positive samples (i.e.
|
---|
12 | * defect-prone) samples in the data than negative samples (i.e.
|
---|
13 | * non-defect-prone), the defect-prone entities are over-sampled such that the
|
---|
14 | * number of defect-prone and non-defect-prone instances is the same afterwards.
|
---|
15 | * This means, that some of the defect-prone entities will be more than once
|
---|
16 | * within the data.
|
---|
17 | *
|
---|
18 | * @author Steffen Herbold
|
---|
19 | */
|
---|
20 | public class Oversampling implements IProcessesingStrategy,
|
---|
21 | ISetWiseProcessingStrategy {
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Does not have parameters. String is ignored.
|
---|
25 | *
|
---|
26 | * @param parameters
|
---|
27 | * ignored
|
---|
28 | */
|
---|
29 | @Override
|
---|
30 | public void setParameter(String parameters) {
|
---|
31 | // dummy
|
---|
32 | }
|
---|
33 |
|
---|
34 | /*
|
---|
35 | * (non-Javadoc)
|
---|
36 | *
|
---|
37 | * @see
|
---|
38 | * de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.
|
---|
39 | * core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
---|
40 | */
|
---|
41 | @Override
|
---|
42 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
43 | for (Instances traindata : traindataSet) {
|
---|
44 | apply(testdata, traindata);
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | /*
|
---|
49 | * (non-Javadoc)
|
---|
50 | *
|
---|
51 | * @see
|
---|
52 | * de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.
|
---|
53 | * Instances, weka.core.Instances)
|
---|
54 | */
|
---|
55 | @Override
|
---|
56 | public void apply(Instances testdata, Instances traindata) {
|
---|
57 |
|
---|
58 | final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts;
|
---|
59 | if (counts[1] < counts[0]) {
|
---|
60 | Instances negatives = new Instances(traindata);
|
---|
61 | Instances positives = new Instances(traindata);
|
---|
62 |
|
---|
63 | for (int i = traindata.size() - 1; i >= 0; i--) {
|
---|
64 | if (Double.compare(1.0, negatives.get(i).classValue()) == 0) {
|
---|
65 | negatives.remove(i);
|
---|
66 | }
|
---|
67 | if (Double.compare(0.0, positives.get(i).classValue()) == 0) {
|
---|
68 | positives.remove(i);
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|
72 | Resample resample = new Resample();
|
---|
73 | // TODO: resample.setSampleSizePercent((100.0*counts[1])/100+0.01);
|
---|
74 | // Ohne +0.01 wird bei tomcat, xerces-1.2 und jedit-4.0 ein negative
|
---|
75 | // weniger zurückgegeben
|
---|
76 | resample.setSampleSizePercent((100.0 * counts[0]) / counts[1]);
|
---|
77 | try {
|
---|
78 | resample.setInputFormat(traindata);
|
---|
79 | positives = Filter.useFilter(positives, resample);
|
---|
80 | } catch (Exception e) {
|
---|
81 | throw new RuntimeException(e);
|
---|
82 | }
|
---|
83 | traindata.clear();
|
---|
84 | for (int i = 0; i < negatives.size(); i++) {
|
---|
85 | traindata.add(negatives.get(i));
|
---|
86 | }
|
---|
87 | for (int i = 0; i < positives.size(); i++) {
|
---|
88 | traindata.add(positives.get(i));
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | }
|
---|