[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[38] | 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 |
|
---|
| 19 | import weka.core.Instances;
|
---|
| 20 | import weka.filters.Filter;
|
---|
| 21 | import weka.filters.supervised.instance.Resample;
|
---|
| 22 |
|
---|
| 23 | /**
|
---|
[41] | 24 | * Resamples the data with WEKA {@link Resample} to have a uniform distribution among all classes.
|
---|
| 25 | *
|
---|
[38] | 26 | * @author Steffen Herbold
|
---|
| 27 | */
|
---|
[41] | 28 | public class Resampling implements IProcessesingStrategy, ISetWiseProcessingStrategy {
|
---|
[38] | 29 |
|
---|
[41] | 30 | /**
|
---|
| 31 | * Does not have parameters. String is ignored.
|
---|
| 32 | *
|
---|
| 33 | * @param parameters
|
---|
| 34 | * ignored
|
---|
| 35 | */
|
---|
| 36 | @Override
|
---|
| 37 | public void setParameter(String parameters) {
|
---|
| 38 | // dummy
|
---|
| 39 | }
|
---|
[38] | 40 |
|
---|
[41] | 41 | /*
|
---|
| 42 | * (non-Javadoc)
|
---|
| 43 | *
|
---|
| 44 | * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
| 45 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 46 | */
|
---|
| 47 | @Override
|
---|
| 48 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 49 | for (Instances traindata : traindataSet) {
|
---|
| 50 | apply(testdata, traindata);
|
---|
| 51 | }
|
---|
| 52 | }
|
---|
[38] | 53 |
|
---|
[41] | 54 | /*
|
---|
| 55 | * (non-Javadoc)
|
---|
| 56 | *
|
---|
| 57 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances,
|
---|
| 58 | * weka.core.Instances)
|
---|
| 59 | */
|
---|
| 60 | @Override
|
---|
| 61 | public void apply(Instances testdata, Instances traindata) {
|
---|
| 62 | Resample resample = new Resample();
|
---|
| 63 | resample.setSampleSizePercent(100);
|
---|
| 64 | resample.setBiasToUniformClass(1.0);
|
---|
[38] | 65 |
|
---|
[41] | 66 | Instances traindataSample;
|
---|
| 67 | try {
|
---|
| 68 | resample.setInputFormat(traindata);
|
---|
| 69 | traindataSample = Filter.useFilter(traindata, resample);
|
---|
| 70 | }
|
---|
| 71 | catch (Exception e) {
|
---|
| 72 | throw new RuntimeException(e);
|
---|
| 73 | }
|
---|
| 74 | traindata.clear();
|
---|
| 75 | for (int i = 0; i < traindataSample.size(); i++) {
|
---|
| 76 | traindata.add(traindataSample.get(i));
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
[38] | 80 | }
|
---|