| 1 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 2 |
|
|---|
| 3 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 4 |
|
|---|
| 5 | import weka.core.Instances;
|
|---|
| 6 | import weka.filters.Filter;
|
|---|
| 7 | import weka.filters.supervised.instance.Resample;
|
|---|
| 8 |
|
|---|
| 9 | /**
|
|---|
| 10 | * Resamples the data with WEKA {@link Resample} to have a uniform distribution among all classes.
|
|---|
| 11 | * @author Steffen Herbold
|
|---|
| 12 | */
|
|---|
| 13 | public class Resampling implements IProcessesingStrategy,
|
|---|
| 14 | ISetWiseProcessingStrategy {
|
|---|
| 15 |
|
|---|
| 16 |
|
|---|
| 17 | /**
|
|---|
| 18 | * Does not have parameters. String is ignored.
|
|---|
| 19 | * @param parameters ignored
|
|---|
| 20 | */
|
|---|
| 21 | @Override
|
|---|
| 22 | public void setParameter(String parameters) {
|
|---|
| 23 | // dummy
|
|---|
| 24 | }
|
|---|
| 25 |
|
|---|
| 26 | /*
|
|---|
| 27 | * (non-Javadoc)
|
|---|
| 28 | * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 29 | */
|
|---|
| 30 | @Override
|
|---|
| 31 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 32 | for( Instances traindata : traindataSet ) {
|
|---|
| 33 | apply(testdata, traindata);
|
|---|
| 34 | }
|
|---|
| 35 | }
|
|---|
| 36 |
|
|---|
| 37 | /*
|
|---|
| 38 | * (non-Javadoc)
|
|---|
| 39 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances)
|
|---|
| 40 | */
|
|---|
| 41 | @Override
|
|---|
| 42 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 43 | Resample resample = new Resample();
|
|---|
| 44 | resample.setSampleSizePercent(100);
|
|---|
| 45 | resample.setBiasToUniformClass(1.0);
|
|---|
| 46 |
|
|---|
| 47 | Instances traindataSample;
|
|---|
| 48 | try {
|
|---|
| 49 | resample.setInputFormat(traindata);
|
|---|
| 50 | traindataSample = Filter.useFilter(traindata, resample);
|
|---|
| 51 | } catch (Exception e) {
|
|---|
| 52 | throw new RuntimeException(e);
|
|---|
| 53 | }
|
|---|
| 54 | traindata.clear();
|
|---|
| 55 | for( int i=0 ; i<traindataSample.size() ; i++ ) {
|
|---|
| 56 | traindata.add(traindataSample.get(i));
|
|---|
| 57 | }
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | }
|
|---|