1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import weka.core.Instances;
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * <p>
|
---|
21 | * Synonym pruning after Amasaki et al. (2015). The selection of the attributes for pruning happens
|
---|
22 | * only on the training data. The attributes are deleted from both the training and test data.
|
---|
23 | * </p>
|
---|
24 | *
|
---|
25 | * @author Steffen Herbold
|
---|
26 | */
|
---|
27 | public class SynonymAttributePruning implements IProcessesingStrategy {
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * (non-Javadoc)
|
---|
31 | *
|
---|
32 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
33 | */
|
---|
34 | @Override
|
---|
35 | public void setParameter(String parameters) {
|
---|
36 |
|
---|
37 | }
|
---|
38 |
|
---|
39 | /**
|
---|
40 | * @see de.ugoe.cs.cpdp.dataprocessing.ProcessesingStrategy#apply(weka.core.Instances,
|
---|
41 | * weka.core.Instances)
|
---|
42 | */
|
---|
43 | @Override
|
---|
44 | public void apply(Instances testdata, Instances traindata) {
|
---|
45 | applySynonymPruning(testdata, traindata);
|
---|
46 | }
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * <p>
|
---|
50 | * Applies the synonym pruning based on the training data.
|
---|
51 | * </p>
|
---|
52 | *
|
---|
53 | * @param testdata
|
---|
54 | * the test data
|
---|
55 | * @param traindata
|
---|
56 | * the training data
|
---|
57 | */
|
---|
58 | private void applySynonymPruning(Instances testdata, Instances traindata) {
|
---|
59 | double distance;
|
---|
60 | for (int j = traindata.numAttributes() - 1; j >= 0; j--) {
|
---|
61 | if( j!=traindata.classIndex() ) {
|
---|
62 | boolean hasClosest = false;
|
---|
63 | for (int i1 = 0; !hasClosest && i1 < traindata.size(); i1++) {
|
---|
64 | for (int i2 = 0; !hasClosest && i2 < traindata.size(); i2++) {
|
---|
65 | if (i1 != i2) {
|
---|
66 | double minVal = Double.MAX_VALUE;
|
---|
67 | double distanceJ = Double.MAX_VALUE;
|
---|
68 | for (int k = 0; k < traindata.numAttributes(); k++) {
|
---|
69 | distance = Math.abs(traindata.get(i1).value(k) - traindata.get(i2).value(k));
|
---|
70 | if (distance < minVal) {
|
---|
71 | minVal = distance;
|
---|
72 | }
|
---|
73 | if (k == j) {
|
---|
74 | distanceJ = distance;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | hasClosest = distanceJ <= minVal;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 | if (!hasClosest) {
|
---|
82 | testdata.deleteAttributeAt(j);
|
---|
83 | traindata.deleteAttributeAt(j);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|