1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import de.ugoe.cs.cpdp.util.WekaUtils;
|
---|
18 | import de.ugoe.cs.cpdp.util.WekaUtils.DistChar;
|
---|
19 | import weka.core.Instances;
|
---|
20 |
|
---|
21 | /**
|
---|
22 | * <p>
|
---|
23 | * Normalization selected according to the TCA+ rules after Nam et al. (Transfer Defect Learning).
|
---|
24 | * </p>
|
---|
25 | *
|
---|
26 | * @author Steffen Herbold
|
---|
27 | */
|
---|
28 | public class TCAPlusNormalization implements IProcessesingStrategy {
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Does not have parameters. String is ignored.
|
---|
32 | *
|
---|
33 | * @param parameters
|
---|
34 | * ignored
|
---|
35 | */
|
---|
36 | @Override
|
---|
37 | public void setParameter(String parameters) {
|
---|
38 | // dummy, paramters not used
|
---|
39 | }
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * (non-Javadoc)
|
---|
43 | *
|
---|
44 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances,
|
---|
45 | * weka.core.Instances)
|
---|
46 | */
|
---|
47 | @Override
|
---|
48 | public void apply(Instances testdata, Instances traindata) {
|
---|
49 | applyTCAPlus(testdata, traindata);
|
---|
50 | }
|
---|
51 |
|
---|
52 | private void applyTCAPlus(Instances testdata, Instances traindata) {
|
---|
53 | DistChar dcTest = WekaUtils.datasetDistance(testdata);
|
---|
54 | DistChar dcTrain = WekaUtils.datasetDistance(traindata);
|
---|
55 |
|
---|
56 | // RULE 1:
|
---|
57 | if (0.9 * dcTrain.mean <= dcTest.mean && 1.1 * dcTrain.mean >= dcTest.mean &&
|
---|
58 | 0.9 * dcTrain.std <= dcTest.std && 1.1 * dcTrain.std >= dcTest.std)
|
---|
59 | {
|
---|
60 | // do nothing
|
---|
61 | }
|
---|
62 | // RULE 2:
|
---|
63 | else if ((0.4 * dcTrain.min > dcTest.min || 1.6 * dcTrain.min < dcTest.min) &&
|
---|
64 | (0.4 * dcTrain.max > dcTest.max || 1.6 * dcTrain.min < dcTest.max) &&
|
---|
65 | (0.4 * dcTrain.min > dcTest.num || 1.6 * dcTrain.min < dcTest.num))
|
---|
66 | {
|
---|
67 | NormalizationUtil.minMax(testdata);
|
---|
68 | NormalizationUtil.minMax(traindata);
|
---|
69 | }
|
---|
70 | // RULE 3:
|
---|
71 | else if ((0.4 * dcTrain.std > dcTest.std && dcTrain.num < dcTest.num) ||
|
---|
72 | (1.6 * dcTrain.std < dcTest.std) && dcTrain.num > dcTest.num)
|
---|
73 | {
|
---|
74 | NormalizationUtil.zScoreTraining(testdata, traindata);
|
---|
75 | }
|
---|
76 | // RULE 4:
|
---|
77 | else if ((0.4 * dcTrain.std > dcTest.std && dcTrain.num > dcTest.num) ||
|
---|
78 | (1.6 * dcTrain.std < dcTest.std) && dcTrain.num < dcTest.num)
|
---|
79 | {
|
---|
80 | NormalizationUtil.zScoreTarget(testdata, traindata);
|
---|
81 | }
|
---|
82 | // RULE 5:
|
---|
83 | else {
|
---|
84 | NormalizationUtil.zScore(testdata);
|
---|
85 | NormalizationUtil.zScore(traindata);
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|