1 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
2 |
|
---|
3 | import org.apache.commons.math3.ml.distance.EuclideanDistance;
|
---|
4 |
|
---|
5 | import weka.core.Instances;
|
---|
6 |
|
---|
7 | // normalization selected according to TCA+ rules (TCA has to be applied separately
|
---|
8 | public class TCAPlusNormalization implements IProcessesingStrategy {
|
---|
9 |
|
---|
10 | private class DistChar {
|
---|
11 | private final double mean;
|
---|
12 | private final double std;
|
---|
13 | private final double min;
|
---|
14 | private final double max;
|
---|
15 | private int num;
|
---|
16 | private DistChar(double mean, double std, double min, double max, int num) {
|
---|
17 | this.mean = mean;
|
---|
18 | this.std = std;
|
---|
19 | this.min = min;
|
---|
20 | this.max = max;
|
---|
21 | this.num = num;
|
---|
22 | }
|
---|
23 | }
|
---|
24 |
|
---|
25 | /**
|
---|
26 | * Does not have parameters. String is ignored.
|
---|
27 | *
|
---|
28 | * @param parameters
|
---|
29 | * ignored
|
---|
30 | */
|
---|
31 | @Override
|
---|
32 | public void setParameter(String parameters) {
|
---|
33 | // TODO Auto-generated method stub
|
---|
34 |
|
---|
35 | }
|
---|
36 |
|
---|
37 | @Override
|
---|
38 | public void apply(Instances testdata, Instances traindata) {
|
---|
39 | applyTCAPlus(testdata, traindata);
|
---|
40 | }
|
---|
41 |
|
---|
42 | private void applyTCAPlus(Instances testdata, Instances traindata) {
|
---|
43 | DistChar dcTest = datasetDistance(testdata);
|
---|
44 | DistChar dcTrain = datasetDistance(traindata);
|
---|
45 |
|
---|
46 | // RULE 1:
|
---|
47 | if( 0.9*dcTrain.mean<=dcTest.mean && 1.1*dcTrain.mean>=dcTest.mean &&
|
---|
48 | 0.9*dcTrain.std<=dcTest.std && 1.1*dcTrain.std>=dcTest.std) {
|
---|
49 | // do nothing
|
---|
50 | }
|
---|
51 | // RULE 2:
|
---|
52 | else if((0.4*dcTrain.min>dcTest.min || 1.6*dcTrain.min<dcTest.min) &&
|
---|
53 | (0.4*dcTrain.max>dcTest.max || 1.6*dcTrain.min<dcTest.max) &&
|
---|
54 | (0.4*dcTrain.min>dcTest.num || 1.6*dcTrain.min<dcTest.num)) {
|
---|
55 | NormalizationUtil.minMax(testdata);
|
---|
56 | NormalizationUtil.minMax(traindata);
|
---|
57 | }
|
---|
58 | // RULE 3:
|
---|
59 | else if((0.4*dcTrain.std>dcTest.std && dcTrain.num<dcTest.num) ||
|
---|
60 | (1.6*dcTrain.std<dcTest.std)&& dcTrain.num>dcTest.num) {
|
---|
61 | NormalizationUtil.zScoreTraining(testdata, traindata);
|
---|
62 | }
|
---|
63 | // RULE 4:
|
---|
64 | else if((0.4*dcTrain.std>dcTest.std && dcTrain.num>dcTest.num) ||
|
---|
65 | (1.6*dcTrain.std<dcTest.std)&& dcTrain.num<dcTest.num) {
|
---|
66 | NormalizationUtil.zScoreTarget(testdata, traindata);
|
---|
67 | }
|
---|
68 | //RULE 5:
|
---|
69 | else {
|
---|
70 | NormalizationUtil.zScore(testdata);
|
---|
71 | NormalizationUtil.zScore(traindata);
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 | private DistChar datasetDistance(Instances data) {
|
---|
76 | double distance;
|
---|
77 | double sumAll = 0.0;
|
---|
78 | double sumAllQ = 0.0;
|
---|
79 | double min = Double.MAX_VALUE;
|
---|
80 | double max = Double.MIN_VALUE;
|
---|
81 | int numCmp = 0;
|
---|
82 | int l = 0;
|
---|
83 | double[] inst1 = new double[data.numAttributes()-1];
|
---|
84 | double[] inst2 = new double[data.numAttributes()-1];
|
---|
85 | EuclideanDistance euclideanDistance = new EuclideanDistance();
|
---|
86 | for( int i=0; i<data.numInstances(); i++ ) {
|
---|
87 | l=0;
|
---|
88 | for( int k=0; k<data.numAttributes(); k++ ) {
|
---|
89 | if( k!=data.classIndex() ) {
|
---|
90 | inst1[l] = data.instance(i).value(k);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | for( int j=0; j<data.numInstances(); j++ ) {
|
---|
94 | l=0;
|
---|
95 | for( int k=0; k<data.numAttributes(); k++ ) {
|
---|
96 | if( k!=data.classIndex() ) {
|
---|
97 | inst2[l] = data.instance(j).value(k);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | distance = euclideanDistance.compute(inst1, inst2);
|
---|
101 | sumAll += distance;
|
---|
102 | sumAllQ += distance*distance;
|
---|
103 | numCmp++;
|
---|
104 | if( distance < min ) {
|
---|
105 | min = distance;
|
---|
106 | }
|
---|
107 | if( distance > max ) {
|
---|
108 | max = distance;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|
112 | double mean = sumAll / numCmp;
|
---|
113 | double std = Math.sqrt((sumAllQ-(sumAll*sumAll)/numCmp) *
|
---|
114 | (1.0d / (numCmp - 1)));
|
---|
115 | return new DistChar(mean, std, min, max, data.numInstances());
|
---|
116 | }
|
---|
117 |
|
---|
118 | }
|
---|