source: trunk/CrossPare/src/de/ugoe/cs/cpdp/dataprocessing/TCAPlusNormalization.java @ 83

Last change on this file since 83 was 64, checked in by sherbold, 9 years ago
  • added some new approaches
  • Property svn:mime-type set to text/plain
File size: 2.8 KB
Line 
1// Copyright 2015 Georg-August-Universität Göttingen, Germany
2//
3//   Licensed under the Apache License, Version 2.0 (the "License");
4//   you may not use this file except in compliance with the License.
5//   You may obtain a copy of the License at
6//
7//       http://www.apache.org/licenses/LICENSE-2.0
8//
9//   Unless required by applicable law or agreed to in writing, software
10//   distributed under the License is distributed on an "AS IS" BASIS,
11//   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12//   See the License for the specific language governing permissions and
13//   limitations under the License.
14
15package de.ugoe.cs.cpdp.dataprocessing;
16
17import de.ugoe.cs.cpdp.util.WekaUtils;
18import de.ugoe.cs.cpdp.util.WekaUtils.DistChar;
19import weka.core.Instances;
20
21// normalization selected according to TCA+ rules (TCA has to be applied separately
22public class TCAPlusNormalization implements IProcessesingStrategy {
23
24    /**
25     * Does not have parameters. String is ignored.
26     *
27     * @param parameters
28     *            ignored
29     */
30    @Override
31    public void setParameter(String parameters) {
32        // TODO Auto-generated method stub
33       
34    }
35
36    @Override
37    public void apply(Instances testdata, Instances traindata) {
38        applyTCAPlus(testdata, traindata);
39    }
40   
41    private void applyTCAPlus(Instances testdata, Instances traindata) {
42        DistChar dcTest = WekaUtils.datasetDistance(testdata);
43        DistChar dcTrain = WekaUtils.datasetDistance(traindata);
44       
45        // RULE 1:
46        if( 0.9*dcTrain.mean<=dcTest.mean && 1.1*dcTrain.mean>=dcTest.mean &&
47            0.9*dcTrain.std<=dcTest.std && 1.1*dcTrain.std>=dcTest.std) {
48            // do nothing
49        }
50        // RULE 2:
51        else if((0.4*dcTrain.min>dcTest.min || 1.6*dcTrain.min<dcTest.min) &&
52                (0.4*dcTrain.max>dcTest.max || 1.6*dcTrain.min<dcTest.max) &&
53                (0.4*dcTrain.min>dcTest.num || 1.6*dcTrain.min<dcTest.num)) {
54            NormalizationUtil.minMax(testdata);
55            NormalizationUtil.minMax(traindata);
56        }
57        // RULE 3:
58        else if((0.4*dcTrain.std>dcTest.std && dcTrain.num<dcTest.num) ||
59                (1.6*dcTrain.std<dcTest.std)&& dcTrain.num>dcTest.num) {
60            NormalizationUtil.zScoreTraining(testdata, traindata);
61        }
62        // RULE 4:
63        else if((0.4*dcTrain.std>dcTest.std && dcTrain.num>dcTest.num) ||
64                (1.6*dcTrain.std<dcTest.std)&& dcTrain.num<dcTest.num) {
65            NormalizationUtil.zScoreTarget(testdata, traindata);
66        }
67        //RULE 5:
68        else {
69            NormalizationUtil.zScore(testdata);
70            NormalizationUtil.zScore(traindata);
71        }
72    }
73}
Note: See TracBrowser for help on using the repository browser.