1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import java.util.Arrays;
|
---|
18 | import java.util.logging.Level;
|
---|
19 |
|
---|
20 | import org.ojalgo.matrix.PrimitiveMatrix;
|
---|
21 | import org.ojalgo.matrix.jama.JamaEigenvalue;
|
---|
22 | import org.ojalgo.matrix.jama.JamaEigenvalue.General;
|
---|
23 | import org.ojalgo.scalar.ComplexNumber;
|
---|
24 | import org.ojalgo.access.Access2D.Builder;
|
---|
25 | import org.ojalgo.array.Array1D;
|
---|
26 |
|
---|
27 | import de.ugoe.cs.util.console.Console;
|
---|
28 | import weka.core.Attribute;
|
---|
29 | import weka.core.Instance;
|
---|
30 | import weka.core.Instances;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * <p>
|
---|
34 | * TCA with a linear kernel after Pan et al. (Domain Adaptation via Transfer Component Analysis) and
|
---|
35 | * used for defect prediction by Nam et al. (Transfer Defect Learning)
|
---|
36 | * </p>
|
---|
37 | *
|
---|
38 | * TODO comment class
|
---|
39 | * @author Steffen Herbold
|
---|
40 | */
|
---|
41 | public class TransferComponentAnalysis implements IProcessesingStrategy {
|
---|
42 |
|
---|
43 | int reducedDimension = 5;
|
---|
44 |
|
---|
45 | @Override
|
---|
46 | public void setParameter(String parameters) {
|
---|
47 |
|
---|
48 | }
|
---|
49 |
|
---|
50 | @Override
|
---|
51 | public void apply(Instances testdata, Instances traindata) {
|
---|
52 | applyTCA(testdata, traindata);
|
---|
53 | }
|
---|
54 |
|
---|
55 | private double linearKernel(Instance x1, Instance x2) {
|
---|
56 | double value = 0.0d;
|
---|
57 | for (int j = 0; j < x1.numAttributes(); j++) {
|
---|
58 | if (j != x1.classIndex()) {
|
---|
59 | value += x1.value(j) * x2.value(j);
|
---|
60 | }
|
---|
61 | }
|
---|
62 | return value;
|
---|
63 | }
|
---|
64 |
|
---|
65 | private void applyTCA(Instances testdata, Instances traindata) {
|
---|
66 | final int sizeTest = testdata.numInstances();
|
---|
67 | final int sizeTrain = traindata.numInstances();
|
---|
68 | final PrimitiveMatrix kernelMatrix = buildKernel(testdata, traindata);
|
---|
69 | final PrimitiveMatrix kernelNormMatrix = buildKernelNormMatrix(sizeTest, sizeTrain); // L in
|
---|
70 | // the
|
---|
71 | // paper
|
---|
72 | final PrimitiveMatrix centerMatrix = buildCenterMatrix(sizeTest, sizeTrain); // H in the
|
---|
73 | // paper
|
---|
74 | final double mu = 1.0; // default from the MATLAB implementation
|
---|
75 | final PrimitiveMatrix muMatrix = buildMuMatrix(sizeTest, sizeTrain, mu);
|
---|
76 | PrimitiveMatrix.FACTORY.makeEye(sizeTest + sizeTrain, sizeTest + sizeTrain);
|
---|
77 |
|
---|
78 | Console.traceln(Level.FINEST,
|
---|
79 | "creating optimization matrix (dimension " + (sizeTest + sizeTrain) + ")");
|
---|
80 | final PrimitiveMatrix optimizationProblem = kernelMatrix.multiplyRight(kernelNormMatrix)
|
---|
81 | .multiplyRight(kernelMatrix).add(muMatrix).invert().multiplyRight(kernelMatrix)
|
---|
82 | .multiplyRight(centerMatrix).multiplyRight(kernelMatrix);
|
---|
83 | Console.traceln(Level.FINEST,
|
---|
84 | "optimization matrix created, now solving eigenvalue problem");
|
---|
85 | General eigenvalueDecomposition = new JamaEigenvalue.General();
|
---|
86 | eigenvalueDecomposition.compute(optimizationProblem);
|
---|
87 | Console.traceln(Level.FINEST, "eigenvalue problem solved");
|
---|
88 |
|
---|
89 | Array1D<ComplexNumber> eigenvaluesArray = eigenvalueDecomposition.getEigenvalues();
|
---|
90 | System.out.println(eigenvaluesArray.length);
|
---|
91 | final double[] eigenvalues = new double[(int) eigenvaluesArray.length];
|
---|
92 | final int[] index = new int[(int) eigenvaluesArray.length];
|
---|
93 | // create kernel transformation matrix from eigenvectors
|
---|
94 | for (int i = 0; i < eigenvaluesArray.length; i++) {
|
---|
95 | eigenvalues[i] = eigenvaluesArray.doubleValue(i);
|
---|
96 | index[i] = i;
|
---|
97 | }
|
---|
98 | quicksort(eigenvalues, index);
|
---|
99 |
|
---|
100 | final PrimitiveMatrix transformedKernel = kernelMatrix.multiplyRight(eigenvalueDecomposition
|
---|
101 | .getV().selectColumns(Arrays.copyOfRange(index, 0, reducedDimension)));
|
---|
102 |
|
---|
103 | // update testdata and traindata
|
---|
104 | for (int j = testdata.numAttributes() - 1; j >= 0; j--) {
|
---|
105 | if (j != testdata.classIndex()) {
|
---|
106 | testdata.deleteAttributeAt(j);
|
---|
107 | traindata.deleteAttributeAt(j);
|
---|
108 | }
|
---|
109 | }
|
---|
110 | for (int j = 0; j < reducedDimension; j++) {
|
---|
111 | testdata.insertAttributeAt(new Attribute("kerneldim" + j), 1);
|
---|
112 | traindata.insertAttributeAt(new Attribute("kerneldim" + j), 1);
|
---|
113 | }
|
---|
114 | for (int i = 0; i < sizeTrain; i++) {
|
---|
115 | for (int j = 0; j < reducedDimension; j++) {
|
---|
116 | traindata.instance(i).setValue(j + 1, transformedKernel.get(i, j));
|
---|
117 | }
|
---|
118 | }
|
---|
119 | for (int i = 0; i < sizeTest; i++) {
|
---|
120 | for (int j = 0; j < reducedDimension; j++) {
|
---|
121 | testdata.instance(i).setValue(j + 1, transformedKernel.get(i + sizeTrain, j));
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | private PrimitiveMatrix buildKernel(Instances testdata, Instances traindata) {
|
---|
127 | final int kernelDim = traindata.numInstances() + testdata.numInstances();
|
---|
128 |
|
---|
129 | Builder<PrimitiveMatrix> kernelBuilder = PrimitiveMatrix.getBuilder(kernelDim, kernelDim);
|
---|
130 | // built upper left quadrant (source, source)
|
---|
131 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
132 | for (int j = 0; j < traindata.numInstances(); j++) {
|
---|
133 | kernelBuilder.set(i, j, linearKernel(traindata.get(i), traindata.get(j)));
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 | // built upper right quadrant (source, target)
|
---|
138 | for (int i = 0; i < traindata.numInstances(); i++) {
|
---|
139 | for (int j = 0; j < testdata.numInstances(); j++) {
|
---|
140 | kernelBuilder.set(i, j + traindata.numInstances(),
|
---|
141 | linearKernel(traindata.get(i), testdata.get(j)));
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | // built lower left quadrant (target, source)
|
---|
146 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
147 | for (int j = 0; j < traindata.numInstances(); j++) {
|
---|
148 | kernelBuilder.set(i + traindata.numInstances(), j,
|
---|
149 | linearKernel(testdata.get(i), traindata.get(j)));
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | // built lower right quadrant (target, target)
|
---|
154 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
155 | for (int j = 0; j < testdata.numInstances(); j++) {
|
---|
156 | kernelBuilder.set(i + traindata.numInstances(), j + traindata.numInstances(),
|
---|
157 | linearKernel(testdata.get(i), testdata.get(j)));
|
---|
158 | }
|
---|
159 | }
|
---|
160 | return kernelBuilder.build();
|
---|
161 | }
|
---|
162 |
|
---|
163 | private PrimitiveMatrix buildKernelNormMatrix(final int dimTest, final int sizeTrain) {
|
---|
164 | final double trainSquared = 1.0 / (sizeTrain * (double) sizeTrain);
|
---|
165 | final double testSquared = 1.0 / (dimTest * (double) dimTest);
|
---|
166 | final double trainTest = -1.0 / (sizeTrain * (double) dimTest);
|
---|
167 | Builder<PrimitiveMatrix> kernelNormBuilder =
|
---|
168 | PrimitiveMatrix.getBuilder(sizeTrain + dimTest, sizeTrain + dimTest);
|
---|
169 |
|
---|
170 | // built upper left quadrant (source, source)
|
---|
171 | for (int i = 0; i < sizeTrain; i++) {
|
---|
172 | for (int j = 0; j < sizeTrain; j++) {
|
---|
173 | kernelNormBuilder.set(i, j, trainSquared);
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | // built upper right quadrant (source, target)
|
---|
178 | for (int i = 0; i < sizeTrain; i++) {
|
---|
179 | for (int j = 0; j < dimTest; j++) {
|
---|
180 | kernelNormBuilder.set(i, j + sizeTrain, trainTest);
|
---|
181 | }
|
---|
182 | }
|
---|
183 |
|
---|
184 | // built lower left quadrant (target, source)
|
---|
185 | for (int i = 0; i < dimTest; i++) {
|
---|
186 | for (int j = 0; j < sizeTrain; j++) {
|
---|
187 | kernelNormBuilder.set(i + sizeTrain, j, trainTest);
|
---|
188 | }
|
---|
189 | }
|
---|
190 |
|
---|
191 | // built lower right quadrant (target, target)
|
---|
192 | for (int i = 0; i < dimTest; i++) {
|
---|
193 | for (int j = 0; j < dimTest; j++) {
|
---|
194 | kernelNormBuilder.set(i + sizeTrain, j + sizeTrain, testSquared);
|
---|
195 | }
|
---|
196 | }
|
---|
197 | return kernelNormBuilder.build();
|
---|
198 | }
|
---|
199 |
|
---|
200 | private PrimitiveMatrix buildCenterMatrix(final int sizeTest, final int sizeTrain) {
|
---|
201 | Builder<PrimitiveMatrix> centerMatrix =
|
---|
202 | PrimitiveMatrix.getBuilder(sizeTest + sizeTrain, sizeTest + sizeTrain);
|
---|
203 | for (int i = 0; i < centerMatrix.countRows(); i++) {
|
---|
204 | centerMatrix.set(i, i, -1.0 / (sizeTest + sizeTrain));
|
---|
205 | }
|
---|
206 | return centerMatrix.build();
|
---|
207 | }
|
---|
208 |
|
---|
209 | private PrimitiveMatrix buildMuMatrix(final int sizeTest,
|
---|
210 | final int sizeTrain,
|
---|
211 | final double mu)
|
---|
212 | {
|
---|
213 | Builder<PrimitiveMatrix> muMatrix =
|
---|
214 | PrimitiveMatrix.getBuilder(sizeTest + sizeTrain, sizeTest + sizeTrain);
|
---|
215 | for (int i = 0; i < muMatrix.countRows(); i++) {
|
---|
216 | muMatrix.set(i, i, mu);
|
---|
217 | }
|
---|
218 | return muMatrix.build();
|
---|
219 | }
|
---|
220 |
|
---|
221 | // below is from http://stackoverflow.com/a/1040503
|
---|
222 | private static void quicksort(double[] main, int[] index) {
|
---|
223 | quicksort(main, index, 0, index.length - 1);
|
---|
224 | }
|
---|
225 |
|
---|
226 | // quicksort a[left] to a[right]
|
---|
227 | private static void quicksort(double[] a, int[] index, int left, int right) {
|
---|
228 | if (right <= left)
|
---|
229 | return;
|
---|
230 | int i = partition(a, index, left, right);
|
---|
231 | quicksort(a, index, left, i - 1);
|
---|
232 | quicksort(a, index, i + 1, right);
|
---|
233 | }
|
---|
234 |
|
---|
235 | // partition a[left] to a[right], assumes left < right
|
---|
236 | private static int partition(double[] a, int[] index, int left, int right) {
|
---|
237 | int i = left - 1;
|
---|
238 | int j = right;
|
---|
239 | while (true) {
|
---|
240 | while (less(a[++i], a[right])) // find item on left to swap
|
---|
241 | ; // a[right] acts as sentinel
|
---|
242 | while (less(a[right], a[--j])) // find item on right to swap
|
---|
243 | if (j == left)
|
---|
244 | break; // don't go out-of-bounds
|
---|
245 | if (i >= j)
|
---|
246 | break; // check if pointers cross
|
---|
247 | exch(a, index, i, j); // swap two elements into place
|
---|
248 | }
|
---|
249 | exch(a, index, i, right); // swap with partition element
|
---|
250 | return i;
|
---|
251 | }
|
---|
252 |
|
---|
253 | // is x < y ?
|
---|
254 | private static boolean less(double x, double y) {
|
---|
255 | return (x < y);
|
---|
256 | }
|
---|
257 |
|
---|
258 | // exchange a[i] and a[j]
|
---|
259 | private static void exch(double[] a, int[] index, int i, int j) {
|
---|
260 | double swap = a[i];
|
---|
261 | a[i] = a[j];
|
---|
262 | a[j] = swap;
|
---|
263 | int b = index[i];
|
---|
264 | index[i] = index[j];
|
---|
265 | index[j] = b;
|
---|
266 | }
|
---|
267 | }
|
---|