[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[2] | 15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 |
|
---|
| 19 | import weka.core.Instances;
|
---|
| 20 | import weka.filters.Filter;
|
---|
| 21 | import weka.filters.supervised.instance.Resample;
|
---|
| 22 |
|
---|
[10] | 23 | /**
|
---|
[41] | 24 | * Implements undersampling, a strategy for handling bias in data. In case there are less positive
|
---|
| 25 | * samples (i.e. defect-prone) samples in the data than negative samples (i.e. non-defect-prone),
|
---|
| 26 | * the non-defect-prone entities are sampled such thatthe number of defect-prone and
|
---|
| 27 | * non-defect-prone instances is the same afterwards.
|
---|
| 28 | *
|
---|
[10] | 29 | * @author Steffen Herbold
|
---|
| 30 | */
|
---|
[41] | 31 | public class Undersampling implements IProcessesingStrategy, ISetWiseProcessingStrategy {
|
---|
[2] | 32 |
|
---|
[41] | 33 | /**
|
---|
| 34 | * Does not have parameters. String is ignored.
|
---|
| 35 | *
|
---|
| 36 | * @param parameters
|
---|
| 37 | * ignored
|
---|
| 38 | */
|
---|
| 39 | @Override
|
---|
| 40 | public void setParameter(String parameters) {
|
---|
| 41 | // dummy
|
---|
| 42 | }
|
---|
[2] | 43 |
|
---|
[41] | 44 | /*
|
---|
| 45 | * (non-Javadoc)
|
---|
| 46 | *
|
---|
| 47 | * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances,
|
---|
| 48 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 49 | */
|
---|
| 50 | @Override
|
---|
| 51 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 52 | for (Instances traindata : traindataSet) {
|
---|
| 53 | apply(testdata, traindata);
|
---|
| 54 | }
|
---|
| 55 | }
|
---|
[2] | 56 |
|
---|
[41] | 57 | /*
|
---|
| 58 | * (non-Javadoc)
|
---|
| 59 | *
|
---|
| 60 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances,
|
---|
| 61 | * weka.core.Instances)
|
---|
| 62 | */
|
---|
| 63 | @Override
|
---|
| 64 | public void apply(Instances testdata, Instances traindata) {
|
---|
[2] | 65 |
|
---|
[41] | 66 | final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts;
|
---|
| 67 |
|
---|
| 68 | if (counts[1] < counts[0]) {
|
---|
| 69 | Instances negatives = new Instances(traindata);
|
---|
| 70 | Instances positives = new Instances(traindata);
|
---|
| 71 |
|
---|
| 72 | for (int i = traindata.size() - 1; i >= 0; i--) {
|
---|
| 73 | if (Double.compare(1.0, negatives.get(i).classValue()) == 0) {
|
---|
| 74 | negatives.remove(i);
|
---|
| 75 | }
|
---|
| 76 | if (Double.compare(0.0, positives.get(i).classValue()) == 0) {
|
---|
| 77 | positives.remove(i);
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | Resample resample = new Resample();
|
---|
| 82 | resample.setSampleSizePercent((100.0 * counts[1]) / counts[0]);
|
---|
| 83 | try {
|
---|
| 84 | resample.setInputFormat(traindata);
|
---|
| 85 | negatives = Filter.useFilter(negatives, resample);
|
---|
| 86 | }
|
---|
| 87 | catch (Exception e) {
|
---|
| 88 | throw new RuntimeException(e);
|
---|
| 89 | }
|
---|
| 90 | traindata.clear();
|
---|
| 91 | for (int i = 0; i < negatives.size(); i++) {
|
---|
| 92 | traindata.add(negatives.get(i));
|
---|
| 93 | }
|
---|
| 94 | for (int i = 0; i < positives.size(); i++) {
|
---|
| 95 | traindata.add(positives.get(i));
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[2] | 100 | }
|
---|