| 1 | package de.ugoe.cs.cpdp.dataprocessing;
|
|---|
| 2 |
|
|---|
| 3 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 4 |
|
|---|
| 5 | import weka.core.Instances;
|
|---|
| 6 | import weka.filters.Filter;
|
|---|
| 7 | import weka.filters.supervised.instance.Resample;
|
|---|
| 8 |
|
|---|
| 9 | /**
|
|---|
| 10 | * Implements undersampling, a strategy for handling bias in data. In case there are less positive samples (i.e. defect-prone) samples in the
|
|---|
| 11 | * data than negative samples (i.e. non-defect-prone), the non-defect-prone entities are sampled such thatthe number of defect-prone and non-defect-prone instances is the same afterwards.
|
|---|
| 12 | * @author Steffen Herbold
|
|---|
| 13 | */
|
|---|
| 14 | public class Undersampling implements IProcessesingStrategy,
|
|---|
| 15 | ISetWiseProcessingStrategy {
|
|---|
| 16 |
|
|---|
| 17 |
|
|---|
| 18 | /**
|
|---|
| 19 | * Does not have parameters. String is ignored.
|
|---|
| 20 | * @param parameters ignored
|
|---|
| 21 | */
|
|---|
| 22 | @Override
|
|---|
| 23 | public void setParameter(String parameters) {
|
|---|
| 24 | // dummy
|
|---|
| 25 | }
|
|---|
| 26 |
|
|---|
| 27 | /*
|
|---|
| 28 | * (non-Javadoc)
|
|---|
| 29 | * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList)
|
|---|
| 30 | */
|
|---|
| 31 | @Override
|
|---|
| 32 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
|---|
| 33 | for( Instances traindata : traindataSet ) {
|
|---|
| 34 | apply(testdata, traindata);
|
|---|
| 35 | }
|
|---|
| 36 | }
|
|---|
| 37 |
|
|---|
| 38 | /*
|
|---|
| 39 | * (non-Javadoc)
|
|---|
| 40 | * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances)
|
|---|
| 41 | */
|
|---|
| 42 | @Override
|
|---|
| 43 | public void apply(Instances testdata, Instances traindata) {
|
|---|
| 44 |
|
|---|
| 45 | final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts;
|
|---|
| 46 |
|
|---|
| 47 | if( counts[1]<counts[0] ) {
|
|---|
| 48 | Instances negatives = new Instances(traindata);
|
|---|
| 49 | Instances positives = new Instances(traindata);
|
|---|
| 50 |
|
|---|
| 51 | for( int i=traindata.size()-1 ; i>=0 ; i-- ) {
|
|---|
| 52 | if( Double.compare(1.0, negatives.get(i).classValue())==0 ) {
|
|---|
| 53 | negatives.remove(i);
|
|---|
| 54 | }
|
|---|
| 55 | if( Double.compare(0.0, positives.get(i).classValue())==0 ) {
|
|---|
| 56 | positives.remove(i);
|
|---|
| 57 | }
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | Resample resample = new Resample();
|
|---|
| 61 | // TODO: resample.setSampleSizePercent((100.0*counts[1])/100+0.01);
|
|---|
| 62 | // Ohne +0.01 wird bei tomcat, xerces-1.2 und jedit-4.0 ein negative weniger zurückgegeben
|
|---|
| 63 | resample.setSampleSizePercent((100.0* counts[1])/counts[0]);
|
|---|
| 64 | try {
|
|---|
| 65 | resample.setInputFormat(traindata);
|
|---|
| 66 | negatives = Filter.useFilter(negatives, resample);
|
|---|
| 67 | } catch (Exception e) {
|
|---|
| 68 | throw new RuntimeException(e);
|
|---|
| 69 | }
|
|---|
| 70 | traindata.clear();
|
|---|
| 71 | for( int i=0 ; i<negatives.size() ; i++ ) {
|
|---|
| 72 | traindata.add(negatives.get(i));
|
|---|
| 73 | }
|
|---|
| 74 | for( int i=0 ; i<positives.size() ; i++ ) {
|
|---|
| 75 | traindata.add(positives.get(i));
|
|---|
| 76 | }
|
|---|
| 77 | }
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | }
|
|---|