| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.dataselection;
|
|---|
| 16 |
|
|---|
| 17 | import java.util.ArrayList;
|
|---|
| 18 |
|
|---|
| 19 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 20 |
|
|---|
| 21 | import weka.core.Attribute;
|
|---|
| 22 | import weka.core.DenseInstance;
|
|---|
| 23 | import weka.core.Instance;
|
|---|
| 24 | import weka.core.Instances;
|
|---|
| 25 | import weka.core.Utils;
|
|---|
| 26 | import weka.experiment.Stats;
|
|---|
| 27 | import weka.filters.Filter;
|
|---|
| 28 | import weka.filters.unsupervised.attribute.Normalize;
|
|---|
| 29 |
|
|---|
| 30 | /**
|
|---|
| 31 | * Abstract class that implements the foundation of setwise data selection strategies using
|
|---|
| 32 | * distributional characteristics. This class provides the means to transform the data sets into
|
|---|
| 33 | * their characteristic vectors.
|
|---|
| 34 | *
|
|---|
| 35 | * @author Steffen Herbold
|
|---|
| 36 | */
|
|---|
| 37 | public abstract class AbstractCharacteristicSelection implements ISetWiseDataselectionStrategy {
|
|---|
| 38 |
|
|---|
| 39 | /**
|
|---|
| 40 | * vector with the distributional characteristics
|
|---|
| 41 | */
|
|---|
| 42 | private String[] characteristics = new String[]
|
|---|
| 43 | { "mean", "stddev" };
|
|---|
| 44 |
|
|---|
| 45 | /**
|
|---|
| 46 | * Sets the distributional characteristics. The names of the characteristics are separated by
|
|---|
| 47 | * blanks.
|
|---|
| 48 | */
|
|---|
| 49 | @Override
|
|---|
| 50 | public void setParameter(String parameters) {
|
|---|
| 51 | if (!"".equals(parameters)) {
|
|---|
| 52 | characteristics = parameters.split(" ");
|
|---|
| 53 | }
|
|---|
| 54 | }
|
|---|
| 55 |
|
|---|
| 56 | /**
|
|---|
| 57 | * Transforms the data into the distributional characteristics. The first instance is the test
|
|---|
| 58 | * data, followed by the training data.
|
|---|
| 59 | *
|
|---|
| 60 | * @param testdata
|
|---|
| 61 | * test data
|
|---|
| 62 | * @param traindataSet
|
|---|
| 63 | * training data sets
|
|---|
| 64 | * @return distributional characteristics of the data
|
|---|
| 65 | */
|
|---|
| 66 | protected Instances characteristicInstances(Instances testdata,
|
|---|
| 67 | SetUniqueList<Instances> traindataSet)
|
|---|
| 68 | {
|
|---|
| 69 | // setup weka Instances for clustering
|
|---|
| 70 | final ArrayList<Attribute> atts = new ArrayList<Attribute>();
|
|---|
| 71 |
|
|---|
| 72 | final Attribute classAtt = testdata.classAttribute();
|
|---|
| 73 | for (int i = 0; i < testdata.numAttributes(); i++) {
|
|---|
| 74 | Attribute dataAtt = testdata.attribute(i);
|
|---|
| 75 | if (!dataAtt.equals(classAtt)) {
|
|---|
| 76 | for (String characteristic : characteristics) {
|
|---|
| 77 | atts.add(new Attribute(dataAtt.name() + "_" + characteristic));
|
|---|
| 78 | }
|
|---|
| 79 | }
|
|---|
| 80 | }
|
|---|
| 81 | final Instances data = new Instances("distributional_characteristics", atts, 0);
|
|---|
| 82 |
|
|---|
| 83 | // setup data for clustering
|
|---|
| 84 | double[] instanceValues = new double[atts.size()];
|
|---|
| 85 | for (int i = 0; i < testdata.numAttributes(); i++) {
|
|---|
| 86 | Attribute dataAtt = testdata.attribute(i);
|
|---|
| 87 | if (!dataAtt.equals(classAtt)) {
|
|---|
| 88 | Stats stats = testdata.attributeStats(i).numericStats;
|
|---|
| 89 | for (int j = 0; j < characteristics.length; j++) {
|
|---|
| 90 | if ("mean".equals(characteristics[j])) {
|
|---|
| 91 | instanceValues[i * characteristics.length + j] = stats.mean;
|
|---|
| 92 | }
|
|---|
| 93 | else if ("stddev".equals(characteristics[j])) {
|
|---|
| 94 | instanceValues[i * characteristics.length + j] = stats.stdDev;
|
|---|
| 95 | }
|
|---|
| 96 | else if ("var".equals(characteristics[j])) {
|
|---|
| 97 | instanceValues[i * characteristics.length + j] = testdata.variance(j);
|
|---|
| 98 | }
|
|---|
| 99 | else if ("max".equals(characteristics[j])) {
|
|---|
| 100 | instanceValues[i * characteristics.length + j] = stats.max;
|
|---|
| 101 | }
|
|---|
| 102 | else if ("min".equals(characteristics[j])) {
|
|---|
| 103 | instanceValues[i * characteristics.length + j] = stats.min;
|
|---|
| 104 | }
|
|---|
| 105 | else if ("median".equals(characteristics[j])) {
|
|---|
| 106 | instanceValues[i * characteristics.length + j] =
|
|---|
| 107 | Utils.kthSmallestValue(testdata.attributeToDoubleArray(i),
|
|---|
| 108 | testdata.size() / 2);
|
|---|
| 109 | }
|
|---|
| 110 | else {
|
|---|
| 111 | throw new RuntimeException("Unkown distributional characteristic: " +
|
|---|
| 112 | characteristics[j]);
|
|---|
| 113 | }
|
|---|
| 114 | }
|
|---|
| 115 | }
|
|---|
| 116 | }
|
|---|
| 117 | data.add(new DenseInstance(1.0, instanceValues));
|
|---|
| 118 |
|
|---|
| 119 | for (Instances traindata : traindataSet) {
|
|---|
| 120 | instanceValues = new double[atts.size()];
|
|---|
| 121 | for (int i = 0; i < traindata.numAttributes(); i++) {
|
|---|
| 122 | Attribute dataAtt = traindata.attribute(i);
|
|---|
| 123 | if (!dataAtt.equals(classAtt)) {
|
|---|
| 124 | Stats stats = traindata.attributeStats(i).numericStats;
|
|---|
| 125 | for (int j = 0; j < characteristics.length; j++) {
|
|---|
| 126 | if ("mean".equals(characteristics[j])) {
|
|---|
| 127 | instanceValues[i * characteristics.length + j] = stats.mean;
|
|---|
| 128 | }
|
|---|
| 129 | else if ("stddev".equals(characteristics[j])) {
|
|---|
| 130 | instanceValues[i * characteristics.length + j] = stats.stdDev;
|
|---|
| 131 | }
|
|---|
| 132 | else if ("var".equals(characteristics[j])) {
|
|---|
| 133 | instanceValues[i * characteristics.length + j] = traindata.variance(j);
|
|---|
| 134 | }
|
|---|
| 135 | else if ("max".equals(characteristics[j])) {
|
|---|
| 136 | instanceValues[i * characteristics.length + j] = stats.max;
|
|---|
| 137 | }
|
|---|
| 138 | else if ("min".equals(characteristics[j])) {
|
|---|
| 139 | instanceValues[i * characteristics.length + j] = stats.min;
|
|---|
| 140 | }
|
|---|
| 141 | else if ("median".equals(characteristics[j])) {
|
|---|
| 142 | instanceValues[i * characteristics.length + j] =
|
|---|
| 143 | Utils.kthSmallestValue(traindata.attributeToDoubleArray(i),
|
|---|
| 144 | traindata.size() / 2);
|
|---|
| 145 | }
|
|---|
| 146 | else {
|
|---|
| 147 | throw new RuntimeException("Unkown distributional characteristic: " +
|
|---|
| 148 | characteristics[j]);
|
|---|
| 149 | }
|
|---|
| 150 | }
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 | Instance instance = new DenseInstance(1.0, instanceValues);
|
|---|
| 154 |
|
|---|
| 155 | data.add(instance);
|
|---|
| 156 | }
|
|---|
| 157 | return data;
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | /**
|
|---|
| 161 | * Returns the normalized distributional characteristics of the training data.
|
|---|
| 162 | *
|
|---|
| 163 | * @param testdata
|
|---|
| 164 | * test data
|
|---|
| 165 | * @param traindataSet
|
|---|
| 166 | * training data sets
|
|---|
| 167 | * @return normalized distributional characteristics of the data
|
|---|
| 168 | */
|
|---|
| 169 | protected Instances normalizedCharacteristicInstances(Instances testdata,
|
|---|
| 170 | SetUniqueList<Instances> traindataSet)
|
|---|
| 171 | {
|
|---|
| 172 | Instances data = characteristicInstances(testdata, traindataSet);
|
|---|
| 173 | try {
|
|---|
| 174 | final Normalize normalizer = new Normalize();
|
|---|
| 175 | normalizer.setInputFormat(data);
|
|---|
| 176 | data = Filter.useFilter(data, normalizer);
|
|---|
| 177 | }
|
|---|
| 178 | catch (Exception e) {
|
|---|
| 179 | throw new RuntimeException("Unexpected exception during normalization of distributional characteristics.",
|
|---|
| 180 | e);
|
|---|
| 181 | }
|
|---|
| 182 | return data;
|
|---|
| 183 | }
|
|---|
| 184 | }
|
|---|