1 | package de.ugoe.cs.cpdp.dataselection;
|
---|
2 |
|
---|
3 | import java.util.ArrayList;
|
---|
4 |
|
---|
5 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
6 |
|
---|
7 | import weka.core.Attribute;
|
---|
8 | import weka.core.DenseInstance;
|
---|
9 | import weka.core.Instance;
|
---|
10 | import weka.core.Instances;
|
---|
11 | import weka.experiment.Stats;
|
---|
12 | import weka.filters.Filter;
|
---|
13 | import weka.filters.unsupervised.attribute.Normalize;
|
---|
14 |
|
---|
15 | /**
|
---|
16 | * Abstract class that implements the foundation of setwise data selection strategies using distributional characteristics.
|
---|
17 | * This class provides the means to transform the data sets into their characteristic vectors.
|
---|
18 | * @author Steffen Herbold
|
---|
19 | */
|
---|
20 | public abstract class AbstractCharacteristicSelection implements
|
---|
21 | ISetWiseDataselectionStrategy {
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * vector with the distributional characteristics
|
---|
25 | */
|
---|
26 | private String[] characteristics = new String[]{"mean","stddev"};
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Sets the distributional characteristics. The names of the characteristics are separated by blanks.
|
---|
30 | */
|
---|
31 | @Override
|
---|
32 | public void setParameter(String parameters) {
|
---|
33 | if( !"".equals(parameters) ) {
|
---|
34 | characteristics = parameters.split(" ");
|
---|
35 | }
|
---|
36 | }
|
---|
37 |
|
---|
38 | /**
|
---|
39 | * Transforms the data into the distributional characteristics. The first instance is the test data, followed by the training data.
|
---|
40 | * @param testdata test data
|
---|
41 | * @param traindataSet training data sets
|
---|
42 | * @return distributional characteristics of the data
|
---|
43 | */
|
---|
44 | protected Instances characteristicInstances(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
45 | // setup weka Instances for clustering
|
---|
46 | final ArrayList<Attribute> atts = new ArrayList<Attribute>();
|
---|
47 |
|
---|
48 | final Attribute classAtt = testdata.classAttribute();
|
---|
49 | for( int i=0 ; i<testdata.numAttributes() ; i++ ) {
|
---|
50 | Attribute dataAtt = testdata.attribute(i);
|
---|
51 | if( !dataAtt.equals(classAtt) ) {
|
---|
52 | for( String characteristic : characteristics ) {
|
---|
53 | atts.add(new Attribute(dataAtt.name() + "_" + characteristic));
|
---|
54 | }
|
---|
55 | }
|
---|
56 | }
|
---|
57 | final Instances data = new Instances("distributional_characteristics", atts, 0);
|
---|
58 |
|
---|
59 | // setup data for clustering
|
---|
60 | double[] instanceValues = new double[atts.size()];
|
---|
61 | for( int i=0 ; i<testdata.numAttributes() ; i++ ) {
|
---|
62 | Attribute dataAtt = testdata.attribute(i);
|
---|
63 | if( !dataAtt.equals(classAtt) ) {
|
---|
64 | Stats stats = testdata.attributeStats(i).numericStats;
|
---|
65 | for( int j=0; j<characteristics.length; j++ ) {
|
---|
66 | if( "mean".equals(characteristics[j]) ) {
|
---|
67 | instanceValues[i*characteristics.length+j] = stats.mean;
|
---|
68 | } else if( "stddev".equals(characteristics[j])) {
|
---|
69 | instanceValues[i*characteristics.length+j] = stats.stdDev;
|
---|
70 | } else if( "var".equals(characteristics[j])) {
|
---|
71 | instanceValues[i*characteristics.length+j] = testdata.variance(j);
|
---|
72 | } else {
|
---|
73 | throw new RuntimeException("Unkown distributional characteristic: " + characteristics[j]);
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|
77 | }
|
---|
78 | data.add(new DenseInstance(1.0, instanceValues));
|
---|
79 |
|
---|
80 | for( Instances traindata : traindataSet ) {
|
---|
81 | instanceValues = new double[atts.size()];
|
---|
82 | for( int i=0 ; i<traindata.numAttributes() ; i++ ) {
|
---|
83 | Attribute dataAtt = traindata.attribute(i);
|
---|
84 | if( !dataAtt.equals(classAtt) ) {
|
---|
85 | Stats stats = traindata.attributeStats(i).numericStats;
|
---|
86 | for( int j=0; j<characteristics.length; j++ ) {
|
---|
87 | if( "mean".equals(characteristics[j]) ) {
|
---|
88 | instanceValues[i*characteristics.length+j] = stats.mean;
|
---|
89 | } else if( "stddev".equals(characteristics[j])) {
|
---|
90 | instanceValues[i*characteristics.length+j] = stats.stdDev;
|
---|
91 | } else if( "var".equals(characteristics[j])) {
|
---|
92 | instanceValues[i*characteristics.length+j] = testdata.variance(j);
|
---|
93 | } else {
|
---|
94 | throw new RuntimeException("Unkown distributional characteristic: " + characteristics[j]);
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 | Instance instance = new DenseInstance(1.0, instanceValues);
|
---|
100 |
|
---|
101 | data.add(instance);
|
---|
102 | }
|
---|
103 | return data;
|
---|
104 | }
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Returns the normalized distributional characteristics of the training data.
|
---|
108 | * @param testdata test data
|
---|
109 | * @param traindataSet training data sets
|
---|
110 | * @return normalized distributional characteristics of the data
|
---|
111 | */
|
---|
112 | protected Instances normalizedCharacteristicInstances(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
113 | Instances data = characteristicInstances(testdata, traindataSet);
|
---|
114 | try {
|
---|
115 | final Normalize normalizer = new Normalize();
|
---|
116 | normalizer.setInputFormat(data);
|
---|
117 | data = Filter.useFilter(data, normalizer);
|
---|
118 | } catch (Exception e) {
|
---|
119 | throw new RuntimeException("Unexpected exception during normalization of distributional characteristics.", e);
|
---|
120 | }
|
---|
121 | return data;
|
---|
122 | }
|
---|
123 | }
|
---|