1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.ArrayList;
|
---|
18 |
|
---|
19 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
20 |
|
---|
21 | import weka.core.Attribute;
|
---|
22 | import weka.core.DenseInstance;
|
---|
23 | import weka.core.Instance;
|
---|
24 | import weka.core.Instances;
|
---|
25 | import weka.experiment.Stats;
|
---|
26 | import weka.filters.Filter;
|
---|
27 | import weka.filters.unsupervised.attribute.Normalize;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Abstract class that implements the foundation of setwise data selection strategies using
|
---|
31 | * distributional characteristics. This class provides the means to transform the data sets into
|
---|
32 | * their characteristic vectors.
|
---|
33 | *
|
---|
34 | * @author Steffen Herbold
|
---|
35 | */
|
---|
36 | public abstract class AbstractCharacteristicSelection implements ISetWiseDataselectionStrategy {
|
---|
37 |
|
---|
38 | /**
|
---|
39 | * vector with the distributional characteristics
|
---|
40 | */
|
---|
41 | private String[] characteristics = new String[]
|
---|
42 | { "mean", "stddev" };
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * Sets the distributional characteristics. The names of the characteristics are separated by
|
---|
46 | * blanks.
|
---|
47 | */
|
---|
48 | @Override
|
---|
49 | public void setParameter(String parameters) {
|
---|
50 | if (!"".equals(parameters)) {
|
---|
51 | characteristics = parameters.split(" ");
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Transforms the data into the distributional characteristics. The first instance is the test
|
---|
57 | * data, followed by the training data.
|
---|
58 | *
|
---|
59 | * @param testdata
|
---|
60 | * test data
|
---|
61 | * @param traindataSet
|
---|
62 | * training data sets
|
---|
63 | * @return distributional characteristics of the data
|
---|
64 | */
|
---|
65 | protected Instances characteristicInstances(Instances testdata,
|
---|
66 | SetUniqueList<Instances> traindataSet)
|
---|
67 | {
|
---|
68 | // setup weka Instances for clustering
|
---|
69 | final ArrayList<Attribute> atts = new ArrayList<Attribute>();
|
---|
70 |
|
---|
71 | final Attribute classAtt = testdata.classAttribute();
|
---|
72 | for (int i = 0; i < testdata.numAttributes(); i++) {
|
---|
73 | Attribute dataAtt = testdata.attribute(i);
|
---|
74 | if (!dataAtt.equals(classAtt)) {
|
---|
75 | for (String characteristic : characteristics) {
|
---|
76 | atts.add(new Attribute(dataAtt.name() + "_" + characteristic));
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|
80 | final Instances data = new Instances("distributional_characteristics", atts, 0);
|
---|
81 |
|
---|
82 | // setup data for clustering
|
---|
83 | double[] instanceValues = new double[atts.size()];
|
---|
84 | for (int i = 0; i < testdata.numAttributes(); i++) {
|
---|
85 | Attribute dataAtt = testdata.attribute(i);
|
---|
86 | if (!dataAtt.equals(classAtt)) {
|
---|
87 | Stats stats = testdata.attributeStats(i).numericStats;
|
---|
88 | for (int j = 0; j < characteristics.length; j++) {
|
---|
89 | if ("mean".equals(characteristics[j])) {
|
---|
90 | instanceValues[i * characteristics.length + j] = stats.mean;
|
---|
91 | }
|
---|
92 | else if ("stddev".equals(characteristics[j])) {
|
---|
93 | instanceValues[i * characteristics.length + j] = stats.stdDev;
|
---|
94 | }
|
---|
95 | else if ("var".equals(characteristics[j])) {
|
---|
96 | instanceValues[i * characteristics.length + j] = testdata.variance(j);
|
---|
97 | }
|
---|
98 | else {
|
---|
99 | throw new RuntimeException("Unkown distributional characteristic: " +
|
---|
100 | characteristics[j]);
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|
105 | data.add(new DenseInstance(1.0, instanceValues));
|
---|
106 |
|
---|
107 | for (Instances traindata : traindataSet) {
|
---|
108 | instanceValues = new double[atts.size()];
|
---|
109 | for (int i = 0; i < traindata.numAttributes(); i++) {
|
---|
110 | Attribute dataAtt = traindata.attribute(i);
|
---|
111 | if (!dataAtt.equals(classAtt)) {
|
---|
112 | Stats stats = traindata.attributeStats(i).numericStats;
|
---|
113 | for (int j = 0; j < characteristics.length; j++) {
|
---|
114 | if ("mean".equals(characteristics[j])) {
|
---|
115 | instanceValues[i * characteristics.length + j] = stats.mean;
|
---|
116 | }
|
---|
117 | else if ("stddev".equals(characteristics[j])) {
|
---|
118 | instanceValues[i * characteristics.length + j] = stats.stdDev;
|
---|
119 | }
|
---|
120 | else if ("var".equals(characteristics[j])) {
|
---|
121 | instanceValues[i * characteristics.length + j] = testdata.variance(j);
|
---|
122 | }
|
---|
123 | else {
|
---|
124 | throw new RuntimeException("Unkown distributional characteristic: " +
|
---|
125 | characteristics[j]);
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 | Instance instance = new DenseInstance(1.0, instanceValues);
|
---|
131 |
|
---|
132 | data.add(instance);
|
---|
133 | }
|
---|
134 | return data;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Returns the normalized distributional characteristics of the training data.
|
---|
139 | *
|
---|
140 | * @param testdata
|
---|
141 | * test data
|
---|
142 | * @param traindataSet
|
---|
143 | * training data sets
|
---|
144 | * @return normalized distributional characteristics of the data
|
---|
145 | */
|
---|
146 | protected Instances normalizedCharacteristicInstances(Instances testdata,
|
---|
147 | SetUniqueList<Instances> traindataSet)
|
---|
148 | {
|
---|
149 | Instances data = characteristicInstances(testdata, traindataSet);
|
---|
150 | try {
|
---|
151 | final Normalize normalizer = new Normalize();
|
---|
152 | normalizer.setInputFormat(data);
|
---|
153 | data = Filter.useFilter(data, normalizer);
|
---|
154 | }
|
---|
155 | catch (Exception e) {
|
---|
156 | throw new RuntimeException(
|
---|
157 | "Unexpected exception during normalization of distributional characteristics.",
|
---|
158 | e);
|
---|
159 | }
|
---|
160 | return data;
|
---|
161 | }
|
---|
162 | }
|
---|