1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.ArrayList;
|
---|
18 |
|
---|
19 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
20 |
|
---|
21 | import de.ugoe.cs.util.console.Console;
|
---|
22 | import weka.classifiers.Classifier;
|
---|
23 | import weka.classifiers.Evaluation;
|
---|
24 | import weka.classifiers.trees.J48;
|
---|
25 | import weka.classifiers.trees.REPTree;
|
---|
26 | import weka.core.Attribute;
|
---|
27 | import weka.core.DenseInstance;
|
---|
28 | import weka.core.Instances;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * <p>
|
---|
32 | * Training data selection as a combination of Zimmermann et al. 2009
|
---|
33 | * </p>
|
---|
34 | *
|
---|
35 | * @author Steffen Herbold
|
---|
36 | */
|
---|
37 | public class DecisionTreeSelection extends AbstractCharacteristicSelection {
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
41 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
42 | */
|
---|
43 | @Override
|
---|
44 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
45 | final Instances data = characteristicInstances(testdata, traindataSet);
|
---|
46 |
|
---|
47 | final ArrayList<String> attVals = new ArrayList<String>();
|
---|
48 | attVals.add("same");
|
---|
49 | attVals.add("more");
|
---|
50 | attVals.add("less");
|
---|
51 | final ArrayList<Attribute> atts = new ArrayList<Attribute>();
|
---|
52 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
53 | atts.add(new Attribute(data.attribute(j).name(), attVals));
|
---|
54 | }
|
---|
55 | atts.add(new Attribute("score"));
|
---|
56 | Instances similarityData = new Instances("similarity", atts, 0);
|
---|
57 | similarityData.setClassIndex(similarityData.numAttributes() - 1);
|
---|
58 |
|
---|
59 | try {
|
---|
60 | Classifier classifier = new J48();
|
---|
61 | for (int i = 0; i < traindataSet.size(); i++) {
|
---|
62 | classifier.buildClassifier(traindataSet.get(i));
|
---|
63 | for (int j = 0; j < traindataSet.size(); j++) {
|
---|
64 | if (i != j) {
|
---|
65 | double[] similarity = new double[data.numAttributes() + 1];
|
---|
66 | for (int k = 0; k < data.numAttributes(); k++) {
|
---|
67 | if (0.9 * data.get(i + 1).value(k) > data.get(j + 1).value(k)) {
|
---|
68 | similarity[k] = 2.0;
|
---|
69 | }
|
---|
70 | else if (1.1 * data.get(i + 1).value(k) < data.get(j + 1).value(k)) {
|
---|
71 | similarity[k] = 1.0;
|
---|
72 | }
|
---|
73 | else {
|
---|
74 | similarity[k] = 0.0;
|
---|
75 | }
|
---|
76 | }
|
---|
77 |
|
---|
78 | Evaluation eval = new Evaluation(traindataSet.get(j));
|
---|
79 | eval.evaluateModel(classifier, traindataSet.get(j));
|
---|
80 | similarity[data.numAttributes()] = eval.fMeasure(1);
|
---|
81 | similarityData.add(new DenseInstance(1.0, similarity));
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|
85 | REPTree repTree = new REPTree();
|
---|
86 | repTree.buildClassifier(similarityData);
|
---|
87 |
|
---|
88 | Instances testTrainSimilarity = new Instances(similarityData);
|
---|
89 | testTrainSimilarity.clear();
|
---|
90 | for (int i = 0; i < traindataSet.size(); i++) {
|
---|
91 | double[] similarity = new double[data.numAttributes() + 1];
|
---|
92 | for (int k = 0; k < data.numAttributes(); k++) {
|
---|
93 | if (0.9 * data.get(0).value(k) > data.get(i + 1).value(k)) {
|
---|
94 | similarity[k] = 2.0;
|
---|
95 | }
|
---|
96 | else if (1.1 * data.get(0).value(k) < data.get(i + 1).value(k)) {
|
---|
97 | similarity[k] = 1.0;
|
---|
98 | }
|
---|
99 | else {
|
---|
100 | similarity[k] = 0.0;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | testTrainSimilarity.add(new DenseInstance(1.0, similarity));
|
---|
104 | }
|
---|
105 |
|
---|
106 | int bestScoringProductIndex = -1;
|
---|
107 | double maxScore = Double.MIN_VALUE;
|
---|
108 | for (int i = 0; i < traindataSet.size(); i++) {
|
---|
109 | double score = repTree.classifyInstance(testTrainSimilarity.get(i));
|
---|
110 | if (score > maxScore) {
|
---|
111 | maxScore = score;
|
---|
112 | bestScoringProductIndex = i;
|
---|
113 | }
|
---|
114 | }
|
---|
115 | Instances bestScoringProduct = traindataSet.get(bestScoringProductIndex);
|
---|
116 | traindataSet.clear();
|
---|
117 | traindataSet.add(bestScoringProduct);
|
---|
118 | }
|
---|
119 | catch (Exception e) {
|
---|
120 | Console.printerr("failure during DecisionTreeSelection: " + e.getMessage());
|
---|
121 | throw new RuntimeException(e);
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|