1 | // Copyright 2016 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.Collections;
|
---|
18 | import java.util.LinkedList;
|
---|
19 |
|
---|
20 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
21 | import org.apache.commons.math3.stat.descriptive.rank.Median;
|
---|
22 | import org.apache.commons.math3.util.MathArrays;
|
---|
23 |
|
---|
24 | import de.ugoe.cs.cpdp.dataprocessing.MORPH;
|
---|
25 | import de.ugoe.cs.cpdp.util.WekaUtils;
|
---|
26 | import weka.core.Instance;
|
---|
27 | import weka.core.Instances;
|
---|
28 | import weka.filters.Filter;
|
---|
29 | import weka.filters.supervised.instance.Resample;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * <p>
|
---|
33 | * Implements LACE2 data privacy filter after Peters et al.
|
---|
34 | * </p>
|
---|
35 | *
|
---|
36 | * @author Steffen Herbold
|
---|
37 | */
|
---|
38 | public class LACE2 implements ISetWiseDataselectionStrategy {
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * percentage of data selected by the internal CLIFF.
|
---|
42 | */
|
---|
43 | private double percentage = 0.10;
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * (non-Javadoc)
|
---|
47 | *
|
---|
48 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
49 | */
|
---|
50 | @Override
|
---|
51 | public void setParameter(String parameters) {
|
---|
52 | if (parameters != null && !parameters.isEmpty()) {
|
---|
53 | percentage = Double.parseDouble(parameters);
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * (non-Javadoc)
|
---|
59 | *
|
---|
60 | * @see de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
61 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
62 | */
|
---|
63 | @Override
|
---|
64 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
65 | Instances selectedData = new Instances(testdata);
|
---|
66 | selectedData.clear();
|
---|
67 |
|
---|
68 | LinkedList<Instances> traindataCopy = new LinkedList<>(traindataSet);
|
---|
69 | Collections.shuffle(traindataCopy);
|
---|
70 |
|
---|
71 | CLIFF cliff = new CLIFF();
|
---|
72 | cliff.setParameter(Double.toString(percentage));
|
---|
73 | MORPH morph = new MORPH();
|
---|
74 | Median median = new Median();
|
---|
75 | double minDist = Double.MIN_VALUE;
|
---|
76 |
|
---|
77 | for (Instances traindata : traindataCopy) {
|
---|
78 | Instances cliffedData = cliff.applyCLIFF(traindata);
|
---|
79 | if (minDist == Double.MIN_VALUE) {
|
---|
80 | // determine distance for leader-follower algorithm
|
---|
81 | Instances sample;
|
---|
82 | if (traindata.size() > 100) {
|
---|
83 | Resample resample = new Resample();
|
---|
84 | resample.setSampleSizePercent(100.0 / traindata.size() * 100.0);
|
---|
85 | resample.setBiasToUniformClass(0.0);
|
---|
86 | resample.setNoReplacement(true);
|
---|
87 | try {
|
---|
88 | resample.setInputFormat(traindata);
|
---|
89 | sample = Filter.useFilter(traindata, resample);
|
---|
90 | }
|
---|
91 | catch (Exception e) {
|
---|
92 | throw new RuntimeException(e);
|
---|
93 | }
|
---|
94 | }
|
---|
95 | else {
|
---|
96 | sample = new Instances(traindata);
|
---|
97 | }
|
---|
98 | double[] distances = new double[sample.size()];
|
---|
99 | for (int i = 0; i < sample.size(); i++) {
|
---|
100 | Instance unlikeNeighbor = morph.getNearestUnlikeNeighbor(sample.get(i), sample);
|
---|
101 | distances[i] = MathArrays.distance(WekaUtils.instanceValues(sample.get(i)),
|
---|
102 | WekaUtils.instanceValues(unlikeNeighbor));
|
---|
103 | }
|
---|
104 | minDist = median.evaluate(distances);
|
---|
105 | }
|
---|
106 | for (int i = 0; i < cliffedData.size(); i++) {
|
---|
107 | Instance unlikeNeighbor =
|
---|
108 | morph.getNearestUnlikeNeighbor(cliffedData.get(i), selectedData);
|
---|
109 | if (unlikeNeighbor == null) {
|
---|
110 | selectedData.add(cliffedData.get(i));
|
---|
111 | }
|
---|
112 | else {
|
---|
113 | double distance =
|
---|
114 | MathArrays.distance(WekaUtils.instanceValues(cliffedData.get(i)),
|
---|
115 | WekaUtils.instanceValues(unlikeNeighbor));
|
---|
116 | if (distance > minDist) {
|
---|
117 | morph.morphInstance(cliffedData.get(i), cliffedData);
|
---|
118 | selectedData.add(cliffedData.get(i));
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 | }
|
---|