[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[64] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
| 16 |
|
---|
| 17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 18 | import org.apache.commons.math3.linear.BlockRealMatrix;
|
---|
| 19 | import org.apache.commons.math3.linear.LUDecomposition;
|
---|
| 20 | import org.apache.commons.math3.linear.RealMatrix;
|
---|
[117] | 21 | import org.apache.commons.math3.linear.SingularMatrixException;
|
---|
[64] | 22 | import org.apache.commons.math3.stat.correlation.Covariance;
|
---|
| 23 |
|
---|
[117] | 24 | import de.lmu.ifi.dbs.elki.logging.Logging.Level;
|
---|
[64] | 25 | import de.ugoe.cs.cpdp.util.WekaUtils;
|
---|
[117] | 26 | import de.ugoe.cs.util.console.Console;
|
---|
[64] | 27 | import weka.core.Instances;
|
---|
| 28 |
|
---|
| 29 | /**
|
---|
| 30 | * <p>
|
---|
| 31 | * Uses the Mahalanobis distance for outlier removal. All instances that are epsilon times the
|
---|
| 32 | * distance are removed. The default for epsilon is 3.0.
|
---|
| 33 | * </p>
|
---|
| 34 | *
|
---|
| 35 | * @author Steffen Herbold
|
---|
| 36 | */
|
---|
| 37 | public class MahalanobisOutlierRemoval
|
---|
| 38 | implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy
|
---|
| 39 | {
|
---|
| 40 |
|
---|
| 41 | /**
|
---|
| 42 | * Distance outside which entities are removed as outliers.
|
---|
| 43 | */
|
---|
| 44 | private double epsilon = 3.0d;
|
---|
| 45 |
|
---|
| 46 | /**
|
---|
| 47 | * Sets epsilon. Default is 3.0.
|
---|
| 48 | *
|
---|
| 49 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
| 50 | */
|
---|
| 51 | @Override
|
---|
| 52 | public void setParameter(String parameters) {
|
---|
[82] | 53 | if (parameters != null && !parameters.isEmpty()) {
|
---|
[64] | 54 | epsilon = Double.parseDouble(parameters);
|
---|
| 55 | }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | /*
|
---|
| 59 | * (non-Javadoc)
|
---|
| 60 | *
|
---|
| 61 | * @see de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
| 62 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 63 | */
|
---|
| 64 | @Override
|
---|
| 65 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 66 | for (Instances traindata : traindataSet) {
|
---|
| 67 | applyMahalanobisDistancesRemoval(traindata);
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /*
|
---|
| 72 | * (non-Javadoc)
|
---|
| 73 | *
|
---|
| 74 | * @see de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
| 75 | * weka.core.Instances)
|
---|
| 76 | */
|
---|
| 77 | @Override
|
---|
| 78 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
| 79 | applyMahalanobisDistancesRemoval(traindata);
|
---|
| 80 | return traindata;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /**
|
---|
| 84 | * <p>
|
---|
| 85 | * removes all instances, whose Mahalanobi distance to the mean of the data is greater than
|
---|
| 86 | * epsilon.
|
---|
| 87 | * </p>
|
---|
| 88 | *
|
---|
| 89 | * @param data
|
---|
| 90 | * data where the outliers are removed
|
---|
| 91 | */
|
---|
| 92 | private void applyMahalanobisDistancesRemoval(Instances data) {
|
---|
| 93 | RealMatrix values = new BlockRealMatrix(data.size(), data.numAttributes() - 1);
|
---|
| 94 | for (int i = 0; i < data.size(); i++) {
|
---|
| 95 | values.setRow(i, WekaUtils.instanceValues(data.get(i)));
|
---|
| 96 | }
|
---|
[117] | 97 | RealMatrix inverseCovariance;
|
---|
| 98 | try {
|
---|
[135] | 99 | inverseCovariance = new LUDecomposition(new Covariance(values).getCovarianceMatrix())
|
---|
| 100 | .getSolver().getInverse();
|
---|
| 101 | }
|
---|
| 102 | catch (SingularMatrixException e) {
|
---|
| 103 | Console
|
---|
| 104 | .traceln(Level.WARNING,
|
---|
| 105 | "could not perform Mahalanobis outlier removal due to singular covariance matrix");
|
---|
[117] | 106 | return;
|
---|
| 107 | }
|
---|
[64] | 108 | // create mean vector
|
---|
| 109 | double[] meanValues = new double[data.numAttributes() - 1];
|
---|
| 110 | int k = 0;
|
---|
| 111 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 112 | if (j != data.classIndex()) {
|
---|
| 113 | meanValues[k] = data.attributeStats(j).numericStats.mean;
|
---|
| 114 | k++;
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | for (int i = data.size() - 1; i >= 0; i--) {
|
---|
| 119 | double distance =
|
---|
| 120 | mahalanobisDistance(inverseCovariance, WekaUtils.instanceValues(data.get(i)),
|
---|
| 121 | meanValues);
|
---|
| 122 | if (distance > epsilon) {
|
---|
| 123 | data.remove(i);
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | /**
|
---|
| 129 | * <p>
|
---|
| 130 | * Calculates the Mahalanobis distance between two vectors for a given inverse covariance
|
---|
| 131 | * matric.
|
---|
| 132 | * </p>
|
---|
| 133 | *
|
---|
| 134 | * @param inverseCovariance
|
---|
| 135 | * @param vector1
|
---|
| 136 | * @param vector2
|
---|
| 137 | * @return
|
---|
| 138 | */
|
---|
| 139 | private double mahalanobisDistance(RealMatrix inverseCovariance,
|
---|
| 140 | double[] vector1,
|
---|
| 141 | double[] vector2)
|
---|
| 142 | {
|
---|
| 143 | RealMatrix x = new BlockRealMatrix(1, vector1.length);
|
---|
| 144 | x.setRow(0, vector1);
|
---|
| 145 | RealMatrix y = new BlockRealMatrix(1, vector2.length);
|
---|
| 146 | y.setRow(0, vector2);
|
---|
| 147 |
|
---|
| 148 | RealMatrix deltaxy = x.subtract(y);
|
---|
| 149 |
|
---|
| 150 | return Math
|
---|
| 151 | .sqrt(deltaxy.multiply(inverseCovariance).multiply(deltaxy.transpose()).getEntry(0, 0));
|
---|
| 152 | }
|
---|
| 153 | }
|
---|