1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
18 | import org.apache.commons.math3.linear.BlockRealMatrix;
|
---|
19 | import org.apache.commons.math3.linear.LUDecomposition;
|
---|
20 | import org.apache.commons.math3.linear.RealMatrix;
|
---|
21 | import org.apache.commons.math3.linear.SingularMatrixException;
|
---|
22 | import org.apache.commons.math3.stat.correlation.Covariance;
|
---|
23 |
|
---|
24 | import de.lmu.ifi.dbs.elki.logging.Logging.Level;
|
---|
25 | import de.ugoe.cs.cpdp.util.WekaUtils;
|
---|
26 | import de.ugoe.cs.util.console.Console;
|
---|
27 | import weka.core.Instances;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * <p>
|
---|
31 | * Uses the Mahalanobis distance for outlier removal. All instances that are epsilon times the
|
---|
32 | * distance are removed. The default for epsilon is 3.0.
|
---|
33 | * </p>
|
---|
34 | *
|
---|
35 | * @author Steffen Herbold
|
---|
36 | */
|
---|
37 | public class MahalanobisOutlierRemoval
|
---|
38 | implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy
|
---|
39 | {
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Distance outside which entities are removed as outliers.
|
---|
43 | */
|
---|
44 | private double epsilon = 3.0d;
|
---|
45 |
|
---|
46 | /**
|
---|
47 | * Sets epsilon. Default is 3.0.
|
---|
48 | *
|
---|
49 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
50 | */
|
---|
51 | @Override
|
---|
52 | public void setParameter(String parameters) {
|
---|
53 | if (parameters != null && !parameters.isEmpty()) {
|
---|
54 | epsilon = Double.parseDouble(parameters);
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | /*
|
---|
59 | * (non-Javadoc)
|
---|
60 | *
|
---|
61 | * @see de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
62 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
63 | */
|
---|
64 | @Override
|
---|
65 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
66 | for (Instances traindata : traindataSet) {
|
---|
67 | applyMahalanobisDistancesRemoval(traindata);
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*
|
---|
72 | * (non-Javadoc)
|
---|
73 | *
|
---|
74 | * @see de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
75 | * weka.core.Instances)
|
---|
76 | */
|
---|
77 | @Override
|
---|
78 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
79 | applyMahalanobisDistancesRemoval(traindata);
|
---|
80 | return traindata;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /**
|
---|
84 | * <p>
|
---|
85 | * removes all instances, whose Mahalanobi distance to the mean of the data is greater than
|
---|
86 | * epsilon.
|
---|
87 | * </p>
|
---|
88 | *
|
---|
89 | * @param data
|
---|
90 | * data where the outliers are removed
|
---|
91 | */
|
---|
92 | private void applyMahalanobisDistancesRemoval(Instances data) {
|
---|
93 | RealMatrix values = new BlockRealMatrix(data.size(), data.numAttributes() - 1);
|
---|
94 | for (int i = 0; i < data.size(); i++) {
|
---|
95 | values.setRow(i, WekaUtils.instanceValues(data.get(i)));
|
---|
96 | }
|
---|
97 | RealMatrix inverseCovariance;
|
---|
98 | try {
|
---|
99 | inverseCovariance = new LUDecomposition(new Covariance(values).getCovarianceMatrix())
|
---|
100 | .getSolver().getInverse();
|
---|
101 | }
|
---|
102 | catch (SingularMatrixException e) {
|
---|
103 | Console
|
---|
104 | .traceln(Level.WARNING,
|
---|
105 | "could not perform Mahalanobis outlier removal due to singular covariance matrix");
|
---|
106 | return;
|
---|
107 | }
|
---|
108 | // create mean vector
|
---|
109 | double[] meanValues = new double[data.numAttributes() - 1];
|
---|
110 | int k = 0;
|
---|
111 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
112 | if (j != data.classIndex()) {
|
---|
113 | meanValues[k] = data.attributeStats(j).numericStats.mean;
|
---|
114 | k++;
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | for (int i = data.size() - 1; i >= 0; i--) {
|
---|
119 | double distance =
|
---|
120 | mahalanobisDistance(inverseCovariance, WekaUtils.instanceValues(data.get(i)),
|
---|
121 | meanValues);
|
---|
122 | if (distance > epsilon) {
|
---|
123 | data.remove(i);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | /**
|
---|
129 | * <p>
|
---|
130 | * Calculates the Mahalanobis distance between two vectors for a given inverse covariance
|
---|
131 | * matric.
|
---|
132 | * </p>
|
---|
133 | *
|
---|
134 | * @param inverseCovariance
|
---|
135 | * @param vector1
|
---|
136 | * @param vector2
|
---|
137 | * @return
|
---|
138 | */
|
---|
139 | private double mahalanobisDistance(RealMatrix inverseCovariance,
|
---|
140 | double[] vector1,
|
---|
141 | double[] vector2)
|
---|
142 | {
|
---|
143 | RealMatrix x = new BlockRealMatrix(1, vector1.length);
|
---|
144 | x.setRow(0, vector1);
|
---|
145 | RealMatrix y = new BlockRealMatrix(1, vector2.length);
|
---|
146 | y.setRow(0, vector2);
|
---|
147 |
|
---|
148 | RealMatrix deltaxy = x.subtract(y);
|
---|
149 |
|
---|
150 | return Math
|
---|
151 | .sqrt(deltaxy.multiply(inverseCovariance).multiply(deltaxy.transpose()).getEntry(0, 0));
|
---|
152 | }
|
---|
153 | }
|
---|