[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[2] | 15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
| 16 |
|
---|
| 17 | import java.util.LinkedList;
|
---|
| 18 | import java.util.List;
|
---|
| 19 |
|
---|
| 20 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 21 |
|
---|
| 22 | import weka.clusterers.EM;
|
---|
| 23 | import weka.core.Instance;
|
---|
| 24 | import weka.core.Instances;
|
---|
| 25 |
|
---|
| 26 | /**
|
---|
[41] | 27 | * Filter based on EM clustering after S. Herbold: Training data selection for cross-project defect
|
---|
| 28 | * prediction
|
---|
| 29 | *
|
---|
[2] | 30 | * @author Steffen Herbold
|
---|
| 31 | */
|
---|
| 32 | public class SetWiseEMClusterSelection extends AbstractCharacteristicSelection {
|
---|
[41] | 33 |
|
---|
| 34 | /**
|
---|
| 35 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
| 36 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
| 37 | */
|
---|
| 38 | @Override
|
---|
| 39 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
| 40 | final Instances data = normalizedCharacteristicInstances(testdata, traindataSet);
|
---|
| 41 | final Instance targetInstance = data.instance(0);
|
---|
| 42 | final List<Instance> candidateInstances = new LinkedList<Instance>();
|
---|
| 43 | for (int i = 1; i < data.numInstances(); i++) {
|
---|
| 44 | candidateInstances.add(data.instance(i));
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | // cluster and select
|
---|
| 48 | try {
|
---|
| 49 | final EM emeans = new EM();
|
---|
| 50 | boolean onlyTarget = true;
|
---|
| 51 | int targetCluster;
|
---|
| 52 | int maxNumClusters = candidateInstances.size();
|
---|
| 53 | do { // while(onlyTarget)
|
---|
| 54 | emeans.setMaximumNumberOfClusters(maxNumClusters);
|
---|
| 55 | emeans.buildClusterer(data);
|
---|
| 56 |
|
---|
| 57 | targetCluster = emeans.clusterInstance(targetInstance);
|
---|
| 58 |
|
---|
| 59 | // check if cluster only contains target project
|
---|
| 60 | for (int i = 0; i < candidateInstances.size() && onlyTarget; i++) {
|
---|
| 61 | onlyTarget &=
|
---|
| 62 | !(emeans.clusterInstance(candidateInstances.get(i)) == targetCluster);
|
---|
| 63 | }
|
---|
| 64 | maxNumClusters = emeans.numberOfClusters() - 1;
|
---|
| 65 | }
|
---|
| 66 | while (onlyTarget);
|
---|
| 67 |
|
---|
| 68 | int numRemoved = 0;
|
---|
| 69 | for (int i = 0; i < candidateInstances.size(); i++) {
|
---|
| 70 | if (emeans.clusterInstance(candidateInstances.get(i)) != targetCluster) {
|
---|
| 71 | traindataSet.remove(i - numRemoved++);
|
---|
| 72 | }
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | catch (Exception e) {
|
---|
[135] | 76 | throw new RuntimeException("error applying setwise EM clustering training data selection",
|
---|
[41] | 77 | e);
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
[2] | 80 | }
|
---|