1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.LinkedList;
|
---|
18 | import java.util.List;
|
---|
19 |
|
---|
20 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
21 |
|
---|
22 | import weka.clusterers.EM;
|
---|
23 | import weka.core.Instance;
|
---|
24 | import weka.core.Instances;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Filter based on EM clustering after S. Herbold: Training data selection for cross-project defect
|
---|
28 | * prediction
|
---|
29 | *
|
---|
30 | * @author Steffen Herbold
|
---|
31 | */
|
---|
32 | public class SetWiseEMClusterSelection extends AbstractCharacteristicSelection {
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
36 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
37 | */
|
---|
38 | @Override
|
---|
39 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
40 | final Instances data = normalizedCharacteristicInstances(testdata, traindataSet);
|
---|
41 | final Instance targetInstance = data.instance(0);
|
---|
42 | final List<Instance> candidateInstances = new LinkedList<Instance>();
|
---|
43 | for (int i = 1; i < data.numInstances(); i++) {
|
---|
44 | candidateInstances.add(data.instance(i));
|
---|
45 | }
|
---|
46 |
|
---|
47 | // cluster and select
|
---|
48 | try {
|
---|
49 | final EM emeans = new EM();
|
---|
50 | boolean onlyTarget = true;
|
---|
51 | int targetCluster;
|
---|
52 | int maxNumClusters = candidateInstances.size();
|
---|
53 | do { // while(onlyTarget)
|
---|
54 | emeans.setMaximumNumberOfClusters(maxNumClusters);
|
---|
55 | emeans.buildClusterer(data);
|
---|
56 |
|
---|
57 | targetCluster = emeans.clusterInstance(targetInstance);
|
---|
58 |
|
---|
59 | // check if cluster only contains target project
|
---|
60 | for (int i = 0; i < candidateInstances.size() && onlyTarget; i++) {
|
---|
61 | onlyTarget &=
|
---|
62 | !(emeans.clusterInstance(candidateInstances.get(i)) == targetCluster);
|
---|
63 | }
|
---|
64 | maxNumClusters = emeans.numberOfClusters() - 1;
|
---|
65 | }
|
---|
66 | while (onlyTarget);
|
---|
67 |
|
---|
68 | int numRemoved = 0;
|
---|
69 | for (int i = 0; i < candidateInstances.size(); i++) {
|
---|
70 | if (emeans.clusterInstance(candidateInstances.get(i)) != targetCluster) {
|
---|
71 | traindataSet.remove(i - numRemoved++);
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|
75 | catch (Exception e) {
|
---|
76 | throw new RuntimeException(
|
---|
77 | "error applying setwise EM clustering training data selection",
|
---|
78 | e);
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|