[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
[41] | 2 | // |
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
| 4 | // you may not use this file except in compliance with the License. |
---|
| 5 | // You may obtain a copy of the License at |
---|
| 6 | // |
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
| 8 | // |
---|
| 9 | // Unless required by applicable law or agreed to in writing, software |
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
| 12 | // See the License for the specific language governing permissions and |
---|
| 13 | // limitations under the License. |
---|
| 14 | |
---|
[29] | 15 | package de.ugoe.cs.cpdp.dataselection; |
---|
| 16 | |
---|
| 17 | import java.util.ArrayList; |
---|
| 18 | import java.util.HashSet; |
---|
| 19 | import java.util.LinkedList; |
---|
| 20 | import java.util.List; |
---|
| 21 | import java.util.Set; |
---|
| 22 | import java.util.logging.Level; |
---|
| 23 | |
---|
| 24 | import org.apache.commons.collections4.list.SetUniqueList; |
---|
| 25 | |
---|
| 26 | import de.ugoe.cs.util.console.Console; |
---|
| 27 | import weka.clusterers.EM; |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.DenseInstance; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.filters.Filter; |
---|
| 33 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | * Selects training data by clustering project context factors. |
---|
| 37 | * |
---|
[41] | 38 | * The project context factors used for the clustering are configured in the XML param attribute, |
---|
| 39 | * Example: <setwiseselector name="SetWiseEMContextSelection" param="AFS TND TNC" /> |
---|
[29] | 40 | */ |
---|
| 41 | public class SetWiseEMContextSelection implements ISetWiseDataselectionStrategy { |
---|
| 42 | |
---|
[135] | 43 | /** |
---|
| 44 | * context factors |
---|
| 45 | */ |
---|
[41] | 46 | private String[] project_context_factors; // = new String[]{"TND", "TNC", "TNF", "TLOC"}; |
---|
[29] | 47 | |
---|
[135] | 48 | /* |
---|
| 49 | * (non-Javadoc) |
---|
| 50 | * |
---|
| 51 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String) |
---|
| 52 | */ |
---|
[41] | 53 | @Override |
---|
| 54 | public void setParameter(String parameters) { |
---|
| 55 | if (parameters != null) { |
---|
| 56 | project_context_factors = parameters.split(" "); |
---|
| 57 | } |
---|
| 58 | } |
---|
[29] | 59 | |
---|
[41] | 60 | /** |
---|
| 61 | * Uses the Weka EM-Clustering algorithm to cluster the projects by their project context |
---|
| 62 | * factors. The project context factors are first normalized and then used for clustering. They |
---|
| 63 | * can be configured in the configuration param. |
---|
| 64 | * |
---|
| 65 | * @param testdata |
---|
| 66 | * @param traindataSet |
---|
| 67 | */ |
---|
| 68 | protected void cluster(Instances testdata, SetUniqueList<Instances> traindataSet) { |
---|
| 69 | // now do the clustering, normalizedCharacteristicInstances ruft getContextFactors auf |
---|
| 70 | final Instances data = this.normalizedCharacteristicInstances(testdata, traindataSet); |
---|
[29] | 71 | |
---|
[41] | 72 | final Instance targetInstance = data.instance(0); |
---|
| 73 | final List<Instance> candidateInstances = new LinkedList<Instance>(); |
---|
| 74 | for (int i = 1; i < data.numInstances(); i++) { |
---|
| 75 | candidateInstances.add(data.instance(i)); |
---|
| 76 | } |
---|
[29] | 77 | |
---|
[41] | 78 | // cluster and select |
---|
| 79 | try { |
---|
| 80 | final EM emeans = new EM(); |
---|
| 81 | boolean onlyTarget = true; |
---|
| 82 | int targetCluster; |
---|
| 83 | int maxNumClusters = candidateInstances.size(); |
---|
[29] | 84 | |
---|
[41] | 85 | do { // while(onlyTarget) |
---|
| 86 | emeans.setMaximumNumberOfClusters(maxNumClusters); |
---|
| 87 | emeans.buildClusterer(data); |
---|
| 88 | |
---|
| 89 | targetCluster = emeans.clusterInstance(targetInstance); |
---|
| 90 | |
---|
| 91 | // check if cluster only contains target project |
---|
| 92 | for (int i = 0; i < candidateInstances.size() && onlyTarget; i++) { |
---|
| 93 | onlyTarget &= |
---|
| 94 | !(emeans.clusterInstance(candidateInstances.get(i)) == targetCluster); |
---|
| 95 | } |
---|
| 96 | maxNumClusters = emeans.numberOfClusters() - 1; |
---|
| 97 | |
---|
| 98 | // Console.traceln(Level.INFO, "number of clusters: " + emeans.numberOfClusters()); |
---|
| 99 | } |
---|
| 100 | while (onlyTarget); |
---|
| 101 | |
---|
| 102 | Console.traceln(Level.INFO, "clusters: " + maxNumClusters); |
---|
| 103 | Console.traceln(Level.INFO, "instances vor dem clustern: " + traindataSet.size()); |
---|
| 104 | int numRemoved = 0; |
---|
| 105 | for (int i = 0; i < candidateInstances.size(); i++) { |
---|
| 106 | if (emeans.clusterInstance(candidateInstances.get(i)) != targetCluster) { |
---|
| 107 | traindataSet.remove(i - numRemoved++); |
---|
| 108 | } |
---|
| 109 | } |
---|
| 110 | Console.traceln(Level.INFO, "instances nach dem clustern: " + traindataSet.size()); |
---|
| 111 | } |
---|
| 112 | catch (Exception e) { |
---|
[135] | 113 | throw new RuntimeException("error applying setwise EM clustering training data selection", |
---|
[41] | 114 | e); |
---|
| 115 | } |
---|
| 116 | } |
---|
| 117 | |
---|
[135] | 118 | /* |
---|
| 119 | * (non-Javadoc) |
---|
| 120 | * |
---|
| 121 | * @see de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy#apply(weka.core.Instances, |
---|
| 122 | * org.apache.commons.collections4.list.SetUniqueList) |
---|
| 123 | */ |
---|
[41] | 124 | @Override |
---|
| 125 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) { |
---|
| 126 | // issuetracking und pl muss passen |
---|
| 127 | /* |
---|
| 128 | * int s = traindataSet.size(); Console.traceln(Level.INFO, |
---|
| 129 | * "remove non matching PL and IssueTracking projects, size now: " + s); |
---|
| 130 | * this.removeWrongContext(testdata, traindataSet, "PL"); this.removeWrongContext(testdata, |
---|
| 131 | * traindataSet, "IssueTracking"); s = traindataSet.size(); Console.traceln(Level.INFO, |
---|
| 132 | * "size after removal: " + s); |
---|
| 133 | */ |
---|
| 134 | // now cluster |
---|
| 135 | this.cluster(testdata, traindataSet); |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | /** |
---|
| 139 | * Returns test- and training data with only the project context factors which were chosen in |
---|
| 140 | * the configuration. This is later used for clustering. |
---|
| 141 | * |
---|
| 142 | * @param testdata |
---|
| 143 | * @param traindataSet |
---|
| 144 | * @return |
---|
| 145 | */ |
---|
[135] | 146 | protected Instances getContextFactors(Instances testdata, |
---|
| 147 | SetUniqueList<Instances> traindataSet) |
---|
[41] | 148 | { |
---|
| 149 | // setup weka Instances for clustering |
---|
| 150 | final ArrayList<Attribute> atts = new ArrayList<Attribute>(); |
---|
| 151 | |
---|
| 152 | // we only want the project context factors |
---|
| 153 | for (String pcf : this.project_context_factors) { |
---|
| 154 | atts.add(new Attribute(pcf)); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | // set up the data |
---|
| 158 | final Instances data = new Instances("project_context_factors", atts, 0); |
---|
| 159 | double[] instanceValues = new double[atts.size()]; |
---|
| 160 | |
---|
| 161 | // only project context factors + only one instance per project needed |
---|
| 162 | int i = 0; |
---|
| 163 | for (String pcf : this.project_context_factors) { |
---|
| 164 | instanceValues[i] = testdata.instance(0).value(testdata.attribute(pcf)); |
---|
| 165 | // Console.traceln(Level.INFO, "adding attribute: " + pcf + " value: " + |
---|
| 166 | // instanceValues[i]); |
---|
| 167 | i++; |
---|
| 168 | } |
---|
| 169 | data.add(new DenseInstance(1.0, instanceValues)); |
---|
| 170 | |
---|
| 171 | // now for the projects of the training stet |
---|
| 172 | for (Instances traindata : traindataSet) { |
---|
| 173 | instanceValues = new double[atts.size()]; // ohne das hier immer dieselben werte?! |
---|
| 174 | i = 0; |
---|
| 175 | for (String pcf : this.project_context_factors) { |
---|
| 176 | instanceValues[i] = traindata.instance(0).value(traindata.attribute(pcf)); |
---|
| 177 | // Console.traceln(Level.INFO, "adding attribute: " + pcf + " value: " + |
---|
| 178 | // instanceValues[i]); |
---|
| 179 | i++; |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | data.add(new DenseInstance(1.0, instanceValues)); |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | return data; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Delete projects where the project context does not match the training project |
---|
| 190 | * |
---|
| 191 | * @param testdata |
---|
| 192 | * @param traindataSet |
---|
| 193 | * @param attribute |
---|
| 194 | */ |
---|
| 195 | protected void removeWrongContext(Instances testdata, |
---|
| 196 | SetUniqueList<Instances> traindataSet, |
---|
| 197 | String attribute) |
---|
| 198 | { |
---|
| 199 | Set<Instances> remove = new HashSet<Instances>(); |
---|
| 200 | for (Instances traindata : traindataSet) { |
---|
| 201 | if (traindata.firstInstance().value(traindata.attribute(attribute)) != testdata |
---|
| 202 | .firstInstance().value(testdata.attribute(attribute))) |
---|
| 203 | { |
---|
| 204 | remove.add(traindata); |
---|
| 205 | // Console.traceln(Level.WARNING, |
---|
[135] | 206 | // "rmove attribute "+attribute+" test: |
---|
| 207 | // "+testdata.firstInstance().value(testdata.attribute(attribute))+" train: |
---|
| 208 | // "+traindata.firstInstance().value(traindata.attribute(attribute))); |
---|
[41] | 209 | } |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | // now delete the projects from set |
---|
| 213 | for (Instances i : remove) { |
---|
| 214 | traindataSet.remove(i); |
---|
| 215 | // Console.traceln(Level.INFO, "removing training project from set"); |
---|
| 216 | } |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Normalizes the data before it gets used for clustering |
---|
| 221 | * |
---|
| 222 | * @param testdata |
---|
| 223 | * @param traindataSet |
---|
| 224 | * @return |
---|
| 225 | */ |
---|
| 226 | protected Instances normalizedCharacteristicInstances(Instances testdata, |
---|
| 227 | SetUniqueList<Instances> traindataSet) |
---|
| 228 | { |
---|
| 229 | Instances data = this.getContextFactors(testdata, traindataSet); |
---|
| 230 | try { |
---|
| 231 | final Normalize normalizer = new Normalize(); |
---|
| 232 | normalizer.setInputFormat(data); |
---|
| 233 | data = Filter.useFilter(data, normalizer); |
---|
| 234 | } |
---|
| 235 | catch (Exception e) { |
---|
[135] | 236 | throw new RuntimeException("Unexpected exception during normalization of distributional characteristics.", |
---|
[41] | 237 | e); |
---|
| 238 | } |
---|
| 239 | return data; |
---|
| 240 | } |
---|
[29] | 241 | } |
---|