1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.dataselection; |
---|
16 | |
---|
17 | import java.util.ArrayList; |
---|
18 | import java.util.HashSet; |
---|
19 | import java.util.LinkedList; |
---|
20 | import java.util.List; |
---|
21 | import java.util.Set; |
---|
22 | import java.util.logging.Level; |
---|
23 | |
---|
24 | import org.apache.commons.collections4.list.SetUniqueList; |
---|
25 | |
---|
26 | import de.ugoe.cs.util.console.Console; |
---|
27 | import weka.clusterers.EM; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.DenseInstance; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.filters.Filter; |
---|
33 | import weka.filters.unsupervised.attribute.Normalize; |
---|
34 | |
---|
35 | /** |
---|
36 | * Selects training data by clustering project context factors. |
---|
37 | * |
---|
38 | * The project context factors used for the clustering are configured in the XML param attribute, |
---|
39 | * Example: <setwiseselector name="SetWiseEMContextSelection" param="AFS TND TNC" /> |
---|
40 | */ |
---|
41 | public class SetWiseEMContextSelection implements ISetWiseDataselectionStrategy { |
---|
42 | |
---|
43 | /** |
---|
44 | * context factors |
---|
45 | */ |
---|
46 | private String[] project_context_factors; // = new String[]{"TND", "TNC", "TNF", "TLOC"}; |
---|
47 | |
---|
48 | /* |
---|
49 | * (non-Javadoc) |
---|
50 | * |
---|
51 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String) |
---|
52 | */ |
---|
53 | @Override |
---|
54 | public void setParameter(String parameters) { |
---|
55 | if (parameters != null) { |
---|
56 | project_context_factors = parameters.split(" "); |
---|
57 | } |
---|
58 | } |
---|
59 | |
---|
60 | /** |
---|
61 | * Uses the Weka EM-Clustering algorithm to cluster the projects by their project context |
---|
62 | * factors. The project context factors are first normalized and then used for clustering. They |
---|
63 | * can be configured in the configuration param. |
---|
64 | * |
---|
65 | * @param testdata |
---|
66 | * @param traindataSet |
---|
67 | */ |
---|
68 | protected void cluster(Instances testdata, SetUniqueList<Instances> traindataSet) { |
---|
69 | // now do the clustering, normalizedCharacteristicInstances ruft getContextFactors auf |
---|
70 | final Instances data = this.normalizedCharacteristicInstances(testdata, traindataSet); |
---|
71 | |
---|
72 | final Instance targetInstance = data.instance(0); |
---|
73 | final List<Instance> candidateInstances = new LinkedList<Instance>(); |
---|
74 | for (int i = 1; i < data.numInstances(); i++) { |
---|
75 | candidateInstances.add(data.instance(i)); |
---|
76 | } |
---|
77 | |
---|
78 | // cluster and select |
---|
79 | try { |
---|
80 | final EM emeans = new EM(); |
---|
81 | boolean onlyTarget = true; |
---|
82 | int targetCluster; |
---|
83 | int maxNumClusters = candidateInstances.size(); |
---|
84 | |
---|
85 | do { // while(onlyTarget) |
---|
86 | emeans.setMaximumNumberOfClusters(maxNumClusters); |
---|
87 | emeans.buildClusterer(data); |
---|
88 | |
---|
89 | targetCluster = emeans.clusterInstance(targetInstance); |
---|
90 | |
---|
91 | // check if cluster only contains target project |
---|
92 | for (int i = 0; i < candidateInstances.size() && onlyTarget; i++) { |
---|
93 | onlyTarget &= |
---|
94 | !(emeans.clusterInstance(candidateInstances.get(i)) == targetCluster); |
---|
95 | } |
---|
96 | maxNumClusters = emeans.numberOfClusters() - 1; |
---|
97 | |
---|
98 | // Console.traceln(Level.INFO, "number of clusters: " + emeans.numberOfClusters()); |
---|
99 | } |
---|
100 | while (onlyTarget); |
---|
101 | |
---|
102 | Console.traceln(Level.INFO, "clusters: " + maxNumClusters); |
---|
103 | Console.traceln(Level.INFO, "instances vor dem clustern: " + traindataSet.size()); |
---|
104 | int numRemoved = 0; |
---|
105 | for (int i = 0; i < candidateInstances.size(); i++) { |
---|
106 | if (emeans.clusterInstance(candidateInstances.get(i)) != targetCluster) { |
---|
107 | traindataSet.remove(i - numRemoved++); |
---|
108 | } |
---|
109 | } |
---|
110 | Console.traceln(Level.INFO, "instances nach dem clustern: " + traindataSet.size()); |
---|
111 | } |
---|
112 | catch (Exception e) { |
---|
113 | throw new RuntimeException("error applying setwise EM clustering training data selection", |
---|
114 | e); |
---|
115 | } |
---|
116 | } |
---|
117 | |
---|
118 | /* |
---|
119 | * (non-Javadoc) |
---|
120 | * |
---|
121 | * @see de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy#apply(weka.core.Instances, |
---|
122 | * org.apache.commons.collections4.list.SetUniqueList) |
---|
123 | */ |
---|
124 | @Override |
---|
125 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) { |
---|
126 | // issuetracking und pl muss passen |
---|
127 | /* |
---|
128 | * int s = traindataSet.size(); Console.traceln(Level.INFO, |
---|
129 | * "remove non matching PL and IssueTracking projects, size now: " + s); |
---|
130 | * this.removeWrongContext(testdata, traindataSet, "PL"); this.removeWrongContext(testdata, |
---|
131 | * traindataSet, "IssueTracking"); s = traindataSet.size(); Console.traceln(Level.INFO, |
---|
132 | * "size after removal: " + s); |
---|
133 | */ |
---|
134 | // now cluster |
---|
135 | this.cluster(testdata, traindataSet); |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Returns test- and training data with only the project context factors which were chosen in |
---|
140 | * the configuration. This is later used for clustering. |
---|
141 | * |
---|
142 | * @param testdata |
---|
143 | * @param traindataSet |
---|
144 | * @return |
---|
145 | */ |
---|
146 | protected Instances getContextFactors(Instances testdata, |
---|
147 | SetUniqueList<Instances> traindataSet) |
---|
148 | { |
---|
149 | // setup weka Instances for clustering |
---|
150 | final ArrayList<Attribute> atts = new ArrayList<Attribute>(); |
---|
151 | |
---|
152 | // we only want the project context factors |
---|
153 | for (String pcf : this.project_context_factors) { |
---|
154 | atts.add(new Attribute(pcf)); |
---|
155 | } |
---|
156 | |
---|
157 | // set up the data |
---|
158 | final Instances data = new Instances("project_context_factors", atts, 0); |
---|
159 | double[] instanceValues = new double[atts.size()]; |
---|
160 | |
---|
161 | // only project context factors + only one instance per project needed |
---|
162 | int i = 0; |
---|
163 | for (String pcf : this.project_context_factors) { |
---|
164 | instanceValues[i] = testdata.instance(0).value(testdata.attribute(pcf)); |
---|
165 | // Console.traceln(Level.INFO, "adding attribute: " + pcf + " value: " + |
---|
166 | // instanceValues[i]); |
---|
167 | i++; |
---|
168 | } |
---|
169 | data.add(new DenseInstance(1.0, instanceValues)); |
---|
170 | |
---|
171 | // now for the projects of the training stet |
---|
172 | for (Instances traindata : traindataSet) { |
---|
173 | instanceValues = new double[atts.size()]; // ohne das hier immer dieselben werte?! |
---|
174 | i = 0; |
---|
175 | for (String pcf : this.project_context_factors) { |
---|
176 | instanceValues[i] = traindata.instance(0).value(traindata.attribute(pcf)); |
---|
177 | // Console.traceln(Level.INFO, "adding attribute: " + pcf + " value: " + |
---|
178 | // instanceValues[i]); |
---|
179 | i++; |
---|
180 | } |
---|
181 | |
---|
182 | data.add(new DenseInstance(1.0, instanceValues)); |
---|
183 | } |
---|
184 | |
---|
185 | return data; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Delete projects where the project context does not match the training project |
---|
190 | * |
---|
191 | * @param testdata |
---|
192 | * @param traindataSet |
---|
193 | * @param attribute |
---|
194 | */ |
---|
195 | protected void removeWrongContext(Instances testdata, |
---|
196 | SetUniqueList<Instances> traindataSet, |
---|
197 | String attribute) |
---|
198 | { |
---|
199 | Set<Instances> remove = new HashSet<Instances>(); |
---|
200 | for (Instances traindata : traindataSet) { |
---|
201 | if (traindata.firstInstance().value(traindata.attribute(attribute)) != testdata |
---|
202 | .firstInstance().value(testdata.attribute(attribute))) |
---|
203 | { |
---|
204 | remove.add(traindata); |
---|
205 | // Console.traceln(Level.WARNING, |
---|
206 | // "rmove attribute "+attribute+" test: |
---|
207 | // "+testdata.firstInstance().value(testdata.attribute(attribute))+" train: |
---|
208 | // "+traindata.firstInstance().value(traindata.attribute(attribute))); |
---|
209 | } |
---|
210 | } |
---|
211 | |
---|
212 | // now delete the projects from set |
---|
213 | for (Instances i : remove) { |
---|
214 | traindataSet.remove(i); |
---|
215 | // Console.traceln(Level.INFO, "removing training project from set"); |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Normalizes the data before it gets used for clustering |
---|
221 | * |
---|
222 | * @param testdata |
---|
223 | * @param traindataSet |
---|
224 | * @return |
---|
225 | */ |
---|
226 | protected Instances normalizedCharacteristicInstances(Instances testdata, |
---|
227 | SetUniqueList<Instances> traindataSet) |
---|
228 | { |
---|
229 | Instances data = this.getContextFactors(testdata, traindataSet); |
---|
230 | try { |
---|
231 | final Normalize normalizer = new Normalize(); |
---|
232 | normalizer.setInputFormat(data); |
---|
233 | data = Filter.useFilter(data, normalizer); |
---|
234 | } |
---|
235 | catch (Exception e) { |
---|
236 | throw new RuntimeException("Unexpected exception during normalization of distributional characteristics.", |
---|
237 | e); |
---|
238 | } |
---|
239 | return data; |
---|
240 | } |
---|
241 | } |
---|