1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import weka.core.Instances;
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * <p>
|
---|
21 | * Synonym outlier removal after Amasaki et al. (2015).
|
---|
22 | * </p>
|
---|
23 | *
|
---|
24 | * @author Steffen Herbold
|
---|
25 | */
|
---|
26 | public class SynonymOutlierRemoval implements IPointWiseDataselectionStrategy {
|
---|
27 |
|
---|
28 | /* (non-Javadoc)
|
---|
29 | * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String)
|
---|
30 | */
|
---|
31 | @Override
|
---|
32 | public void setParameter(String parameters) {
|
---|
33 | // do nothing
|
---|
34 | }
|
---|
35 |
|
---|
36 | /* (non-Javadoc)
|
---|
37 | * @see de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy#apply(weka.core.Instances, weka.core.Instances)
|
---|
38 | */
|
---|
39 | @Override
|
---|
40 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
41 | applySynonymRemoval(traindata);
|
---|
42 | return traindata;
|
---|
43 | }
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * <p>
|
---|
47 | * Applies the synonym outlier removal.
|
---|
48 | * </p>
|
---|
49 | *
|
---|
50 | * @param traindata data from which the outliers are removed.
|
---|
51 | */
|
---|
52 | public void applySynonymRemoval(Instances traindata) {
|
---|
53 | double minDistance[][] = new double[traindata.size()][traindata.numAttributes()-1];
|
---|
54 | double minDistanceAttribute[] = new double[traindata.numAttributes()-1];
|
---|
55 | double distance;
|
---|
56 | for( int j=0; j<minDistanceAttribute.length; j++ ) {
|
---|
57 | minDistanceAttribute[j] = Double.MAX_VALUE;
|
---|
58 | }
|
---|
59 | for (int i1 = traindata.size()-1; i1 < traindata.size(); i1++) {
|
---|
60 | int k=0;
|
---|
61 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
62 | if( j!=traindata.classIndex() ) {
|
---|
63 | minDistance[i1][k] = Double.MAX_VALUE;
|
---|
64 | for (int i2 = 0; i2 < traindata.size(); i2++) {
|
---|
65 | if (i1 != i2) {
|
---|
66 | distance = Math.abs(traindata.get(i1).value(j) - traindata.get(i2).value(j));
|
---|
67 | if (distance < minDistance[i1][k]) {
|
---|
68 | minDistance[i1][k] = distance;
|
---|
69 | }
|
---|
70 | if( distance < minDistanceAttribute[k] ) {
|
---|
71 | minDistanceAttribute[k] = distance;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|
75 | k++;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|
79 | for( int i=traindata.size()-1; i>=0; i-- ) {
|
---|
80 | boolean hasClosest = false;
|
---|
81 | for( int j=0; !hasClosest && j<traindata.numAttributes(); j++ ) {
|
---|
82 | hasClosest = minDistance[i][j]<=minDistanceAttribute[j];
|
---|
83 | }
|
---|
84 | if( !hasClosest ) {
|
---|
85 | traindata.delete(i);
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|