[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[41] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
[2] | 15 | package de.ugoe.cs.cpdp.eval;
|
---|
| 16 |
|
---|
| 17 | import java.io.FileNotFoundException;
|
---|
| 18 | import java.io.FileOutputStream;
|
---|
| 19 | import java.io.PrintWriter;
|
---|
| 20 | import java.util.ArrayList;
|
---|
[68] | 21 | import java.util.Iterator;
|
---|
[2] | 22 | import java.util.LinkedList;
|
---|
| 23 | import java.util.List;
|
---|
| 24 |
|
---|
| 25 | import de.ugoe.cs.cpdp.training.ITrainer;
|
---|
[24] | 26 | import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer;
|
---|
[2] | 27 | import de.ugoe.cs.util.StringTools;
|
---|
| 28 | import weka.classifiers.Classifier;
|
---|
| 29 | import weka.classifiers.Evaluation;
|
---|
| 30 | import weka.core.Attribute;
|
---|
| 31 | import weka.core.Instances;
|
---|
| 32 |
|
---|
| 33 | /**
|
---|
[41] | 34 | * Base class for the evaluation of results of classifiers compatible with the {@link Classifier}
|
---|
| 35 | * interface. For each classifier, the following metrics are calculated:
|
---|
[2] | 36 | * <ul>
|
---|
[41] | 37 | * <li>succHe: Success with recall>0.7, precision>0.5</li>
|
---|
[135] | 38 | * <li>succZi: Success with recall>=0.75, precision>=0.7, and error<=0.25</li>
|
---|
[41] | 39 | * <li>succG75: Success with gscore>0.75</li>
|
---|
| 40 | * <li>succG60: Success with gscore>0.6</li>
|
---|
| 41 | * <li>error</li>
|
---|
| 42 | * <li>recall</li>
|
---|
| 43 | * <li>precision</li>
|
---|
| 44 | * <li>fscore</li>
|
---|
| 45 | * <li>gscore</li>
|
---|
[68] | 46 | * <li>MCC</li>
|
---|
[41] | 47 | * <li>AUC</li>
|
---|
| 48 | * <li>AUCEC (weighted by LOC, if applicable; 0.0 if LOC not available)</li>
|
---|
| 49 | * <li>tpr: true positive rate</li>
|
---|
| 50 | * <li>tnr: true negative rate</li>
|
---|
[68] | 51 | * <li>fpr: false positive rate</li>
|
---|
| 52 | * <li>fnr: false negative rate</li>
|
---|
[41] | 53 | * <li>tp: true positives</li>
|
---|
| 54 | * <li>fp: false positives</li>
|
---|
| 55 | * <li>tn: true negatives</li>
|
---|
| 56 | * <li>fn: false negatives</li>
|
---|
| 57 | * </ul>
|
---|
| 58 | *
|
---|
[2] | 59 | * @author Steffen Herbold
|
---|
| 60 | */
|
---|
| 61 | public abstract class AbstractWekaEvaluation implements IEvaluationStrategy {
|
---|
| 62 |
|
---|
[41] | 63 | /**
|
---|
| 64 | * writer for the evaluation results
|
---|
| 65 | */
|
---|
| 66 | private PrintWriter output = new PrintWriter(System.out);
|
---|
[2] | 67 |
|
---|
[135] | 68 | /**
|
---|
| 69 | * flag that defines if the output is the system out
|
---|
| 70 | */
|
---|
[41] | 71 | private boolean outputIsSystemOut = true;
|
---|
[135] | 72 |
|
---|
| 73 | /**
|
---|
| 74 | * name of the configuration
|
---|
| 75 | */
|
---|
[68] | 76 | private String configurationName = "default";
|
---|
[41] | 77 |
|
---|
| 78 | /**
|
---|
[68] | 79 | * Creates the Weka evaluator. Allows the creation of the evaluator in different ways, e.g., for
|
---|
[41] | 80 | * cross-validation or evaluation on the test data.
|
---|
| 81 | *
|
---|
| 82 | * @param testdata
|
---|
| 83 | * test data
|
---|
| 84 | * @param classifier
|
---|
| 85 | * classifier used
|
---|
| 86 | * @return evaluator
|
---|
| 87 | */
|
---|
| 88 | protected abstract Evaluation createEvaluator(Instances testdata, Classifier classifier);
|
---|
| 89 |
|
---|
| 90 | /*
|
---|
| 91 | * (non-Javadoc)
|
---|
| 92 | *
|
---|
| 93 | * @see de.ugoe.cs.cpdp.eval.EvaluationStrategy#apply(weka.core.Instances, weka.core.Instances,
|
---|
| 94 | * java.util.List, boolean)
|
---|
| 95 | */
|
---|
| 96 | @Override
|
---|
| 97 | public void apply(Instances testdata,
|
---|
| 98 | Instances traindata,
|
---|
| 99 | List<ITrainer> trainers,
|
---|
[135] | 100 | List<Double> efforts,
|
---|
[68] | 101 | boolean writeHeader,
|
---|
| 102 | List<IResultStorage> storages)
|
---|
[41] | 103 | {
|
---|
[68] | 104 | final List<Classifier> classifiers = new LinkedList<>();
|
---|
| 105 | final List<ExperimentResult> experimentResults = new LinkedList<>();
|
---|
| 106 | String productName = testdata.relationName();
|
---|
[135] | 107 |
|
---|
[41] | 108 | for (ITrainer trainer : trainers) {
|
---|
| 109 | if (trainer instanceof IWekaCompatibleTrainer) {
|
---|
| 110 | classifiers.add(((IWekaCompatibleTrainer) trainer).getClassifier());
|
---|
[135] | 111 | experimentResults
|
---|
| 112 | .add(new ExperimentResult(configurationName, productName,
|
---|
| 113 | ((IWekaCompatibleTrainer) trainer).getName()));
|
---|
[41] | 114 | }
|
---|
| 115 | else {
|
---|
| 116 | throw new RuntimeException("The selected evaluator only support Weka classifiers");
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | if (writeHeader) {
|
---|
| 121 | output.append("version,size_test,size_training");
|
---|
| 122 | for (ITrainer trainer : trainers) {
|
---|
| 123 | output.append(",succHe_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 124 | output.append(",succZi_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 125 | output.append(",succG75_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 126 | output.append(",succG60_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 127 | output.append(",error_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 128 | output.append(",recall_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 129 | output.append(",precision_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 130 | output.append(",fscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 131 | output.append(",gscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 132 | output.append(",mcc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 133 | output.append(",auc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 134 | output.append(",aucec_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 135 | output.append(",tpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 136 | output.append(",tnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
[63] | 137 | output.append(",fpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 138 | output.append(",fnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
[41] | 139 | output.append(",tp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 140 | output.append(",fn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 141 | output.append(",tn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 142 | output.append(",fp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
| 143 | }
|
---|
| 144 | output.append(StringTools.ENDLINE);
|
---|
| 145 | }
|
---|
| 146 |
|
---|
[68] | 147 | output.append(productName);
|
---|
[41] | 148 | output.append("," + testdata.numInstances());
|
---|
| 149 | output.append("," + traindata.numInstances());
|
---|
| 150 |
|
---|
| 151 | Evaluation eval = null;
|
---|
[68] | 152 | Iterator<Classifier> classifierIter = classifiers.iterator();
|
---|
| 153 | Iterator<ExperimentResult> resultIter = experimentResults.iterator();
|
---|
| 154 | while (classifierIter.hasNext()) {
|
---|
| 155 | Classifier classifier = classifierIter.next();
|
---|
[41] | 156 | eval = createEvaluator(testdata, classifier);
|
---|
| 157 |
|
---|
| 158 | double pf =
|
---|
| 159 | eval.numFalsePositives(1) / (eval.numFalsePositives(1) + eval.numTrueNegatives(1));
|
---|
| 160 | double gmeasure = 2 * eval.recall(1) * (1.0 - pf) / (eval.recall(1) + (1.0 - pf));
|
---|
[132] | 161 | double aucec = calculateReviewEffort(testdata, classifier, efforts);
|
---|
[68] | 162 | double succHe = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.5 ? 1.0 : 0.0;
|
---|
[135] | 163 | double succZi = eval.recall(1) >= 0.75 && eval.precision(1) >= 0.75 && eval.errorRate()<=0.25 ? 1.0 : 0.0;
|
---|
[68] | 164 | double succG75 = gmeasure > 0.75 ? 1.0 : 0.0;
|
---|
| 165 | double succG60 = gmeasure > 0.6 ? 1.0 : 0.0;
|
---|
[135] | 166 |
|
---|
[68] | 167 | output.append("," + succHe);
|
---|
| 168 | output.append("," + succZi);
|
---|
| 169 | output.append("," + succG75);
|
---|
[135] | 170 | output.append("," + succG60);
|
---|
[41] | 171 | output.append("," + eval.errorRate());
|
---|
| 172 | output.append("," + eval.recall(1));
|
---|
| 173 | output.append("," + eval.precision(1));
|
---|
| 174 | output.append("," + eval.fMeasure(1));
|
---|
| 175 | output.append("," + gmeasure);
|
---|
[63] | 176 | output.append("," + eval.matthewsCorrelationCoefficient(1));
|
---|
[41] | 177 | output.append("," + eval.areaUnderROC(1));
|
---|
| 178 | output.append("," + aucec);
|
---|
| 179 | output.append("," + eval.truePositiveRate(1));
|
---|
| 180 | output.append("," + eval.trueNegativeRate(1));
|
---|
[63] | 181 | output.append("," + eval.falsePositiveRate(1));
|
---|
| 182 | output.append("," + eval.falseNegativeRate(1));
|
---|
[41] | 183 | output.append("," + eval.numTruePositives(1));
|
---|
| 184 | output.append("," + eval.numFalseNegatives(1));
|
---|
| 185 | output.append("," + eval.numTrueNegatives(1));
|
---|
| 186 | output.append("," + eval.numFalsePositives(1));
|
---|
[135] | 187 |
|
---|
[68] | 188 | ExperimentResult result = resultIter.next();
|
---|
| 189 | result.setSizeTestData(testdata.numInstances());
|
---|
| 190 | result.setSizeTrainingData(traindata.numInstances());
|
---|
| 191 | result.setError(eval.errorRate());
|
---|
| 192 | result.setRecall(eval.recall(1));
|
---|
| 193 | result.setPrecision(eval.precision(1));
|
---|
| 194 | result.setFscore(eval.fMeasure(1));
|
---|
| 195 | result.setGscore(gmeasure);
|
---|
| 196 | result.setMcc(eval.matthewsCorrelationCoefficient(1));
|
---|
| 197 | result.setAuc(eval.areaUnderROC(1));
|
---|
| 198 | result.setAucec(aucec);
|
---|
| 199 | result.setTpr(eval.truePositiveRate(1));
|
---|
| 200 | result.setTnr(eval.trueNegativeRate(1));
|
---|
| 201 | result.setFpr(eval.falsePositiveRate(1));
|
---|
| 202 | result.setFnr(eval.falseNegativeRate(1));
|
---|
| 203 | result.setTp(eval.numTruePositives(1));
|
---|
| 204 | result.setFn(eval.numFalseNegatives(1));
|
---|
| 205 | result.setTn(eval.numTrueNegatives(1));
|
---|
| 206 | result.setFp(eval.numFalsePositives(1));
|
---|
[135] | 207 | for (IResultStorage storage : storages) {
|
---|
[68] | 208 | storage.addResult(result);
|
---|
| 209 | }
|
---|
[41] | 210 | }
|
---|
| 211 |
|
---|
| 212 | output.append(StringTools.ENDLINE);
|
---|
| 213 | output.flush();
|
---|
| 214 | }
|
---|
[135] | 215 |
|
---|
| 216 | /**
|
---|
| 217 | * <p>
|
---|
| 218 | * Calculates the effort. TODO: IMPLEMENTATION BUGGY! MUST BE FIXED!
|
---|
| 219 | * </p>
|
---|
| 220 | *
|
---|
| 221 | * @param testdata
|
---|
| 222 | * the test data
|
---|
| 223 | * @param classifier
|
---|
| 224 | * the classifier
|
---|
| 225 | * @param efforts
|
---|
| 226 | * the effort information for each instance in the test data
|
---|
| 227 | * @return
|
---|
| 228 | */
|
---|
| 229 | private double calculateReviewEffort(Instances testdata,
|
---|
| 230 | Classifier classifier,
|
---|
| 231 | List<Double> efforts)
|
---|
| 232 | {
|
---|
| 233 | if (efforts == null) {
|
---|
[132] | 234 | return 0;
|
---|
| 235 | }
|
---|
[135] | 236 |
|
---|
[132] | 237 | final List<Integer> bugPredicted = new ArrayList<>();
|
---|
| 238 | final List<Integer> nobugPredicted = new ArrayList<>();
|
---|
| 239 | double totalLoc = 0.0d;
|
---|
| 240 | int totalBugs = 0;
|
---|
| 241 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
| 242 | try {
|
---|
| 243 | if (Double.compare(classifier.classifyInstance(testdata.instance(i)), 0.0d) == 0) {
|
---|
| 244 | nobugPredicted.add(i);
|
---|
| 245 | }
|
---|
| 246 | else {
|
---|
| 247 | bugPredicted.add(i);
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | catch (Exception e) {
|
---|
[135] | 251 | throw new RuntimeException("unexpected error during the evaluation of the review effort",
|
---|
[132] | 252 | e);
|
---|
| 253 | }
|
---|
| 254 | if (Double.compare(testdata.instance(i).classValue(), 1.0d) == 0) {
|
---|
| 255 | totalBugs++;
|
---|
| 256 | }
|
---|
| 257 | totalLoc += efforts.get(i);
|
---|
| 258 | }
|
---|
[41] | 259 |
|
---|
[132] | 260 | final List<Double> reviewLoc = new ArrayList<>(testdata.numInstances());
|
---|
| 261 | final List<Double> bugsFound = new ArrayList<>(testdata.numInstances());
|
---|
| 262 |
|
---|
| 263 | double currentBugsFound = 0;
|
---|
| 264 |
|
---|
| 265 | while (!bugPredicted.isEmpty()) {
|
---|
| 266 | double minLoc = Double.MAX_VALUE;
|
---|
| 267 | int minIndex = -1;
|
---|
| 268 | for (int i = 0; i < bugPredicted.size(); i++) {
|
---|
| 269 | double currentLoc = efforts.get(bugPredicted.get(i));
|
---|
| 270 | if (currentLoc < minLoc) {
|
---|
| 271 | minIndex = i;
|
---|
| 272 | minLoc = currentLoc;
|
---|
| 273 | }
|
---|
| 274 | }
|
---|
| 275 | if (minIndex != -1) {
|
---|
| 276 | reviewLoc.add(minLoc / totalLoc);
|
---|
| 277 |
|
---|
| 278 | currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue();
|
---|
| 279 | bugsFound.add(currentBugsFound);
|
---|
| 280 |
|
---|
| 281 | bugPredicted.remove(minIndex);
|
---|
| 282 | }
|
---|
| 283 | else {
|
---|
| 284 | throw new RuntimeException("Shouldn't happen!");
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 | while (!nobugPredicted.isEmpty()) {
|
---|
| 289 | double minLoc = Double.MAX_VALUE;
|
---|
| 290 | int minIndex = -1;
|
---|
| 291 | for (int i = 0; i < nobugPredicted.size(); i++) {
|
---|
| 292 | double currentLoc = efforts.get(nobugPredicted.get(i));
|
---|
| 293 | if (currentLoc < minLoc) {
|
---|
| 294 | minIndex = i;
|
---|
| 295 | minLoc = currentLoc;
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | if (minIndex != -1) {
|
---|
| 299 | reviewLoc.add(minLoc / totalLoc);
|
---|
| 300 |
|
---|
| 301 | currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue();
|
---|
| 302 | bugsFound.add(currentBugsFound);
|
---|
| 303 | nobugPredicted.remove(minIndex);
|
---|
| 304 | }
|
---|
| 305 | else {
|
---|
| 306 | throw new RuntimeException("Shouldn't happen!");
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | double auc = 0.0;
|
---|
| 311 | for (int i = 0; i < bugsFound.size(); i++) {
|
---|
| 312 | auc += reviewLoc.get(i) * bugsFound.get(i) / totalBugs;
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | return auc;
|
---|
| 316 | }
|
---|
| 317 |
|
---|
[135] | 318 | /**
|
---|
| 319 | * <p>
|
---|
| 320 | * Calculates effort. Deprecated. Do not use!
|
---|
| 321 | * </p>
|
---|
| 322 | *
|
---|
| 323 | * @param testdata
|
---|
| 324 | * the test data
|
---|
| 325 | * @param classifier
|
---|
| 326 | * the classifier
|
---|
| 327 | * @return
|
---|
| 328 | */
|
---|
[132] | 329 | @SuppressWarnings("unused")
|
---|
| 330 | @Deprecated
|
---|
[41] | 331 | private double calculateReviewEffort(Instances testdata, Classifier classifier) {
|
---|
| 332 |
|
---|
[118] | 333 | // attribute in the JURECZKO data and default
|
---|
[115] | 334 | Attribute loc = testdata.attribute("loc");
|
---|
[41] | 335 | if (loc == null) {
|
---|
[118] | 336 | // attribute in the NASA/SOFTMINE/MDP data
|
---|
[115] | 337 | loc = testdata.attribute("LOC_EXECUTABLE");
|
---|
| 338 | }
|
---|
| 339 | if (loc == null) {
|
---|
[118] | 340 | // attribute in the AEEEM data
|
---|
[115] | 341 | loc = testdata.attribute("numberOfLinesOfCode");
|
---|
| 342 | }
|
---|
[118] | 343 | if (loc == null) {
|
---|
| 344 | // attribute in the RELINK data
|
---|
| 345 | loc = testdata.attribute("CountLineCodeExe");
|
---|
| 346 | }
|
---|
[135] | 347 | if (loc == null) {
|
---|
[41] | 348 | return 0.0;
|
---|
| 349 | }
|
---|
| 350 |
|
---|
| 351 | final List<Integer> bugPredicted = new ArrayList<>();
|
---|
| 352 | final List<Integer> nobugPredicted = new ArrayList<>();
|
---|
| 353 | double totalLoc = 0.0d;
|
---|
| 354 | int totalBugs = 0;
|
---|
| 355 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
| 356 | try {
|
---|
| 357 | if (Double.compare(classifier.classifyInstance(testdata.instance(i)), 0.0d) == 0) {
|
---|
| 358 | nobugPredicted.add(i);
|
---|
| 359 | }
|
---|
| 360 | else {
|
---|
| 361 | bugPredicted.add(i);
|
---|
| 362 | }
|
---|
| 363 | }
|
---|
| 364 | catch (Exception e) {
|
---|
[135] | 365 | throw new RuntimeException("unexpected error during the evaluation of the review effort",
|
---|
[41] | 366 | e);
|
---|
| 367 | }
|
---|
| 368 | if (Double.compare(testdata.instance(i).classValue(), 1.0d) == 0) {
|
---|
| 369 | totalBugs++;
|
---|
| 370 | }
|
---|
| 371 | totalLoc += testdata.instance(i).value(loc);
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 | final List<Double> reviewLoc = new ArrayList<>(testdata.numInstances());
|
---|
| 375 | final List<Double> bugsFound = new ArrayList<>(testdata.numInstances());
|
---|
| 376 |
|
---|
| 377 | double currentBugsFound = 0;
|
---|
| 378 |
|
---|
| 379 | while (!bugPredicted.isEmpty()) {
|
---|
| 380 | double minLoc = Double.MAX_VALUE;
|
---|
| 381 | int minIndex = -1;
|
---|
| 382 | for (int i = 0; i < bugPredicted.size(); i++) {
|
---|
| 383 | double currentLoc = testdata.instance(bugPredicted.get(i)).value(loc);
|
---|
| 384 | if (currentLoc < minLoc) {
|
---|
| 385 | minIndex = i;
|
---|
| 386 | minLoc = currentLoc;
|
---|
| 387 | }
|
---|
| 388 | }
|
---|
| 389 | if (minIndex != -1) {
|
---|
| 390 | reviewLoc.add(minLoc / totalLoc);
|
---|
| 391 |
|
---|
| 392 | currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue();
|
---|
| 393 | bugsFound.add(currentBugsFound);
|
---|
| 394 |
|
---|
| 395 | bugPredicted.remove(minIndex);
|
---|
| 396 | }
|
---|
| 397 | else {
|
---|
| 398 | throw new RuntimeException("Shouldn't happen!");
|
---|
| 399 | }
|
---|
| 400 | }
|
---|
| 401 |
|
---|
| 402 | while (!nobugPredicted.isEmpty()) {
|
---|
| 403 | double minLoc = Double.MAX_VALUE;
|
---|
| 404 | int minIndex = -1;
|
---|
| 405 | for (int i = 0; i < nobugPredicted.size(); i++) {
|
---|
| 406 | double currentLoc = testdata.instance(nobugPredicted.get(i)).value(loc);
|
---|
| 407 | if (currentLoc < minLoc) {
|
---|
| 408 | minIndex = i;
|
---|
| 409 | minLoc = currentLoc;
|
---|
| 410 | }
|
---|
| 411 | }
|
---|
| 412 | if (minIndex != -1) {
|
---|
| 413 | reviewLoc.add(minLoc / totalLoc);
|
---|
| 414 |
|
---|
| 415 | currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue();
|
---|
| 416 | bugsFound.add(currentBugsFound);
|
---|
| 417 | nobugPredicted.remove(minIndex);
|
---|
| 418 | }
|
---|
| 419 | else {
|
---|
| 420 | throw new RuntimeException("Shouldn't happen!");
|
---|
| 421 | }
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | double auc = 0.0;
|
---|
| 425 | for (int i = 0; i < bugsFound.size(); i++) {
|
---|
| 426 | auc += reviewLoc.get(i) * bugsFound.get(i) / totalBugs;
|
---|
| 427 | }
|
---|
| 428 |
|
---|
| 429 | return auc;
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | /*
|
---|
| 433 | * (non-Javadoc)
|
---|
| 434 | *
|
---|
| 435 | * @see de.ugoe.cs.cpdp.Parameterizable#setParameter(java.lang.String)
|
---|
| 436 | */
|
---|
| 437 | @Override
|
---|
| 438 | public void setParameter(String parameters) {
|
---|
| 439 | if (output != null && !outputIsSystemOut) {
|
---|
| 440 | output.close();
|
---|
| 441 | }
|
---|
| 442 | if ("system.out".equals(parameters) || "".equals(parameters)) {
|
---|
| 443 | output = new PrintWriter(System.out);
|
---|
| 444 | outputIsSystemOut = true;
|
---|
| 445 | }
|
---|
| 446 | else {
|
---|
| 447 | try {
|
---|
| 448 | output = new PrintWriter(new FileOutputStream(parameters));
|
---|
| 449 | outputIsSystemOut = false;
|
---|
[135] | 450 | int filenameStart = parameters.lastIndexOf('/') + 1;
|
---|
[68] | 451 | int filenameEnd = parameters.lastIndexOf('.');
|
---|
| 452 | configurationName = parameters.substring(filenameStart, filenameEnd);
|
---|
[41] | 453 | }
|
---|
| 454 | catch (FileNotFoundException e) {
|
---|
| 455 | throw new RuntimeException(e);
|
---|
| 456 | }
|
---|
| 457 | }
|
---|
| 458 | }
|
---|
[2] | 459 | }
|
---|