1 | package de.ugoe.cs.cpdp.eval;
|
---|
2 |
|
---|
3 | import java.io.FileNotFoundException;
|
---|
4 | import java.io.FileOutputStream;
|
---|
5 | import java.io.PrintWriter;
|
---|
6 | import java.util.ArrayList;
|
---|
7 | import java.util.LinkedList;
|
---|
8 | import java.util.List;
|
---|
9 |
|
---|
10 | import de.ugoe.cs.cpdp.training.ITrainer;
|
---|
11 | import de.ugoe.cs.cpdp.training.WekaCompatibleTrainer;
|
---|
12 | import de.ugoe.cs.util.StringTools;
|
---|
13 | import weka.classifiers.Classifier;
|
---|
14 | import weka.classifiers.Evaluation;
|
---|
15 | import weka.core.Attribute;
|
---|
16 | import weka.core.Instances;
|
---|
17 |
|
---|
18 | /**
|
---|
19 | * Base class for the evaluation of results of classifiers compatible with the {@link Classifier} interface.
|
---|
20 | * For each classifier, the following metrics are calculated:
|
---|
21 | * <ul>
|
---|
22 | * <li>Success with recall>0.7, precision>0.5</li>
|
---|
23 | * <li>Success with recall>0.7, precision>0.7</li>
|
---|
24 | * <li>Success with gscore>0.75</li>
|
---|
25 | * <li>Success with gscore>0.6</li>
|
---|
26 | * <li>error rate</li>
|
---|
27 | * <li>recall</li>
|
---|
28 | * <li>precision</li>
|
---|
29 | * <li>fscore</li>
|
---|
30 | * <li>gscore</li>
|
---|
31 | * <li>AUC</li>
|
---|
32 | * <li>AUCEC (weighted by LOC, if applicable; 0.0 if LOC not available)</li>
|
---|
33 | * <li>true positive rate</li>
|
---|
34 | * <li>true negative rate</li>
|
---|
35 | * <li>true positives</li>
|
---|
36 | * <li>false positives</li>
|
---|
37 | * <li>true negatives</li>
|
---|
38 | * <li>false negatives</li>
|
---|
39 | * <li>training error</li>
|
---|
40 | * <li>training recall</li>
|
---|
41 | * <li>training precision</li>
|
---|
42 | * <li>training success with recall>0.7 and precision>0.5
|
---|
43 | * </ul>
|
---|
44 | * @author Steffen Herbold
|
---|
45 | */
|
---|
46 | public abstract class AbstractWekaEvaluation implements IEvaluationStrategy {
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * writer for the evaluation results
|
---|
50 | */
|
---|
51 | private PrintWriter output = new PrintWriter(System.out);
|
---|
52 |
|
---|
53 | private boolean outputIsSystemOut = true;
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Creates the weka evaluator. Allows the creation of the evaluator in different ways, e.g., for cross-validation
|
---|
57 | * or evaluation on the test data.
|
---|
58 | * @param testdata test data
|
---|
59 | * @param classifier classifier used
|
---|
60 | * @return evaluator
|
---|
61 | */
|
---|
62 | protected abstract Evaluation createEvaluator(Instances testdata, Classifier classifier);
|
---|
63 |
|
---|
64 | /*
|
---|
65 | * (non-Javadoc)
|
---|
66 | * @see de.ugoe.cs.cpdp.eval.EvaluationStrategy#apply(weka.core.Instances, weka.core.Instances, java.util.List, boolean)
|
---|
67 | */
|
---|
68 | @Override
|
---|
69 | public void apply(Instances testdata, Instances traindata, List<ITrainer> trainers,
|
---|
70 | boolean writeHeader) {
|
---|
71 | final List<Classifier> classifiers = new LinkedList<Classifier>();
|
---|
72 | for( ITrainer trainer : trainers ) {
|
---|
73 | if( trainer instanceof WekaCompatibleTrainer ) {
|
---|
74 | classifiers.add(((WekaCompatibleTrainer) trainer).getClassifier());
|
---|
75 | } else {
|
---|
76 | throw new RuntimeException("The selected evaluator only support Weka classifiers");
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | if( writeHeader ) {
|
---|
81 | output.append("version,size_test,size_training");
|
---|
82 | for( ITrainer trainer : trainers ) {
|
---|
83 | output.append(",succHe_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
84 | output.append(",succZi_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
85 | output.append(",succG75_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
86 | output.append(",succG60_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
87 | output.append(",error_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
88 | output.append(",recall_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
89 | output.append(",precision_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
90 | output.append(",fscore_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
91 | output.append(",gscore_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
92 | output.append(",mcc_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
93 | output.append(",auc_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
94 | output.append(",aucec_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
95 | output.append(",tpr_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
96 | output.append(",tnr_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
97 | output.append(",tp_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
98 | output.append(",fn_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
99 | output.append(",tn_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
100 | output.append(",fp_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
101 | output.append(",trainerror_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
102 | output.append(",trainrecall_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
103 | output.append(",trainprecision_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
104 | output.append(",trainsuccHe_" + ((WekaCompatibleTrainer) trainer).getName());
|
---|
105 | }
|
---|
106 | output.append(StringTools.ENDLINE);
|
---|
107 | }
|
---|
108 |
|
---|
109 | output.append(testdata.relationName());
|
---|
110 | output.append("," + testdata.numInstances());
|
---|
111 | output.append("," + traindata.numInstances());
|
---|
112 |
|
---|
113 | Evaluation eval = null;
|
---|
114 | Evaluation evalTrain = null;
|
---|
115 | for( Classifier classifier : classifiers ) {
|
---|
116 | eval = createEvaluator(testdata, classifier);
|
---|
117 | evalTrain = createEvaluator(traindata, classifier);
|
---|
118 |
|
---|
119 | double pf = eval.numFalsePositives(1)/(eval.numFalsePositives(1)+eval.numTrueNegatives(1));
|
---|
120 | double gmeasure = 2*eval.recall(1)*(1.0-pf)/(eval.recall(1)+(1.0-pf));
|
---|
121 | double mcc = (eval.numTruePositives(1)*eval.numTrueNegatives(1)-eval.numFalsePositives(1)*eval.numFalseNegatives(1))/Math.sqrt((eval.numTruePositives(1)+eval.numFalsePositives(1))*(eval.numTruePositives(1)+eval.numFalseNegatives(1))*(eval.numTrueNegatives(1)+eval.numFalsePositives(1))*(eval.numTrueNegatives(1)+eval.numFalseNegatives(1)));
|
---|
122 | double aucec = calculateReviewEffort(testdata, classifier);
|
---|
123 |
|
---|
124 | if( eval.recall(1)>=0.7 && eval.precision(1) >= 0.5 ) {
|
---|
125 | output.append(",1");
|
---|
126 | } else {
|
---|
127 | output.append(",0");
|
---|
128 | }
|
---|
129 |
|
---|
130 | if( eval.recall(1)>=0.7 && eval.precision(1) >= 0.7 ) {
|
---|
131 | output.append(",1");
|
---|
132 | } else {
|
---|
133 | output.append(",0");
|
---|
134 | }
|
---|
135 |
|
---|
136 | if( gmeasure>0.75 ) {
|
---|
137 | output.append(",1");
|
---|
138 | } else {
|
---|
139 | output.append(",0");
|
---|
140 | }
|
---|
141 |
|
---|
142 | if( gmeasure>0.6 ) {
|
---|
143 | output.append(",1");
|
---|
144 | } else {
|
---|
145 | output.append(",0");
|
---|
146 | }
|
---|
147 |
|
---|
148 | output.append("," + eval.errorRate());
|
---|
149 | output.append("," + eval.recall(1));
|
---|
150 | output.append("," + eval.precision(1));
|
---|
151 | output.append("," + eval.fMeasure(1));
|
---|
152 | output.append("," + gmeasure);
|
---|
153 | output.append("," + mcc);
|
---|
154 | output.append("," + eval.areaUnderROC(1));
|
---|
155 | output.append("," + aucec);
|
---|
156 | output.append("," + eval.truePositiveRate(1));
|
---|
157 | output.append("," + eval.trueNegativeRate(1));
|
---|
158 | output.append("," + eval.numTruePositives(1));
|
---|
159 | output.append("," + eval.numFalseNegatives(1));
|
---|
160 | output.append("," + eval.numTrueNegatives(1));
|
---|
161 | output.append("," + eval.numFalsePositives(1));
|
---|
162 | output.append("," + evalTrain.errorRate());
|
---|
163 | output.append("," + evalTrain.recall(1));
|
---|
164 | output.append("," + evalTrain.precision(1));
|
---|
165 | if( evalTrain.recall(1)>=0.7 && evalTrain.precision(1) >= 0.5 ) {
|
---|
166 | output.append(",1");
|
---|
167 | } else {
|
---|
168 | output.append(",0");
|
---|
169 | }
|
---|
170 | }
|
---|
171 |
|
---|
172 | output.append(StringTools.ENDLINE);
|
---|
173 | output.flush();
|
---|
174 | }
|
---|
175 |
|
---|
176 | private double calculateReviewEffort(Instances testdata, Classifier classifier) {
|
---|
177 |
|
---|
178 | final Attribute loc = testdata.attribute("loc");
|
---|
179 | if( loc==null ) {
|
---|
180 | return 0.0;
|
---|
181 | }
|
---|
182 |
|
---|
183 | final List<Integer> bugPredicted = new ArrayList<>();
|
---|
184 | final List<Integer> nobugPredicted = new ArrayList<>();
|
---|
185 | double totalLoc = 0.0d;
|
---|
186 | int totalBugs = 0;
|
---|
187 | for( int i=0 ; i<testdata.numInstances() ; i++ ) {
|
---|
188 | try {
|
---|
189 | if( Double.compare(classifier.classifyInstance(testdata.instance(i)),0.0d)==0 ) {
|
---|
190 | nobugPredicted.add(i);
|
---|
191 | } else {
|
---|
192 | bugPredicted.add(i);
|
---|
193 | }
|
---|
194 | } catch (Exception e) {
|
---|
195 | throw new RuntimeException("unexpected error during the evaluation of the review effort", e);
|
---|
196 | }
|
---|
197 | if(Double.compare(testdata.instance(i).classValue(),1.0d)==0) {
|
---|
198 | totalBugs++;
|
---|
199 | }
|
---|
200 | totalLoc += testdata.instance(i).value(loc);
|
---|
201 | }
|
---|
202 |
|
---|
203 | final List<Double> reviewLoc = new ArrayList<>(testdata.numInstances());
|
---|
204 | final List<Double> bugsFound = new ArrayList<>(testdata.numInstances());
|
---|
205 |
|
---|
206 | double currentBugsFound = 0;
|
---|
207 |
|
---|
208 | while( !bugPredicted.isEmpty() ) {
|
---|
209 | double minLoc = Double.MAX_VALUE;
|
---|
210 | int minIndex = -1;
|
---|
211 | for( int i=0 ; i<bugPredicted.size() ; i++ ) {
|
---|
212 | double currentLoc = testdata.instance(bugPredicted.get(i)).value(loc);
|
---|
213 | if( currentLoc<minLoc ) {
|
---|
214 | minIndex = i;
|
---|
215 | minLoc = currentLoc;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | if( minIndex!=-1 ) {
|
---|
219 | reviewLoc.add(minLoc/totalLoc);
|
---|
220 |
|
---|
221 | currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue();
|
---|
222 | bugsFound.add(currentBugsFound);
|
---|
223 |
|
---|
224 | bugPredicted.remove(minIndex);
|
---|
225 | } else {
|
---|
226 | throw new RuntimeException("Shouldn't happen!");
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | while( !nobugPredicted.isEmpty() ) {
|
---|
231 | double minLoc = Double.MAX_VALUE;
|
---|
232 | int minIndex = -1;
|
---|
233 | for( int i=0 ; i<nobugPredicted.size() ; i++ ) {
|
---|
234 | double currentLoc = testdata.instance(nobugPredicted.get(i)).value(loc);
|
---|
235 | if( currentLoc<minLoc ) {
|
---|
236 | minIndex = i;
|
---|
237 | minLoc = currentLoc;
|
---|
238 | }
|
---|
239 | }
|
---|
240 | if( minIndex!=-1 ) {
|
---|
241 | reviewLoc.add(minLoc/totalLoc);
|
---|
242 |
|
---|
243 | currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue();
|
---|
244 | bugsFound.add(currentBugsFound);
|
---|
245 | nobugPredicted.remove(minIndex);
|
---|
246 | } else {
|
---|
247 | throw new RuntimeException("Shouldn't happen!");
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 | double auc = 0.0;
|
---|
252 | for( int i=0 ; i<bugsFound.size() ; i++ ) {
|
---|
253 | auc += reviewLoc.get(i)*bugsFound.get(i)/totalBugs;
|
---|
254 | }
|
---|
255 |
|
---|
256 | return auc;
|
---|
257 | }
|
---|
258 |
|
---|
259 | /*
|
---|
260 | * (non-Javadoc)
|
---|
261 | * @see de.ugoe.cs.cpdp.Parameterizable#setParameter(java.lang.String)
|
---|
262 | */
|
---|
263 | @Override
|
---|
264 | public void setParameter(String parameters) {
|
---|
265 | if( output!=null && !outputIsSystemOut ) {
|
---|
266 | output.close();
|
---|
267 | }
|
---|
268 | if( "system.out".equals(parameters) || "".equals(parameters) ) {
|
---|
269 | output = new PrintWriter(System.out);
|
---|
270 | outputIsSystemOut = true;
|
---|
271 | } else {
|
---|
272 | try {
|
---|
273 | output = new PrintWriter(new FileOutputStream(parameters));
|
---|
274 | outputIsSystemOut = false;
|
---|
275 | } catch (FileNotFoundException e) {
|
---|
276 | throw new RuntimeException(e);
|
---|
277 | }
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|