1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.eval;
|
---|
16 |
|
---|
17 | import java.io.FileNotFoundException;
|
---|
18 | import java.io.FileOutputStream;
|
---|
19 | import java.io.PrintWriter;
|
---|
20 | import java.util.ArrayList;
|
---|
21 | import java.util.Iterator;
|
---|
22 | import java.util.LinkedList;
|
---|
23 | import java.util.List;
|
---|
24 |
|
---|
25 | import de.ugoe.cs.cpdp.training.ITrainer;
|
---|
26 | import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer;
|
---|
27 | import de.ugoe.cs.util.StringTools;
|
---|
28 | import weka.classifiers.Classifier;
|
---|
29 | import weka.classifiers.Evaluation;
|
---|
30 | import weka.core.Attribute;
|
---|
31 | import weka.core.Instances;
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * Base class for the evaluation of results of classifiers compatible with the {@link Classifier}
|
---|
35 | * interface. For each classifier, the following metrics are calculated:
|
---|
36 | * <ul>
|
---|
37 | * <li>succHe: Success with recall>0.7, precision>0.5</li>
|
---|
38 | * <li>succZi: Success with recall>0.7, precision>0.7</li>
|
---|
39 | * <li>succG75: Success with gscore>0.75</li>
|
---|
40 | * <li>succG60: Success with gscore>0.6</li>
|
---|
41 | * <li>error</li>
|
---|
42 | * <li>recall</li>
|
---|
43 | * <li>precision</li>
|
---|
44 | * <li>fscore</li>
|
---|
45 | * <li>gscore</li>
|
---|
46 | * <li>MCC</li>
|
---|
47 | * <li>AUC</li>
|
---|
48 | * <li>AUCEC (weighted by LOC, if applicable; 0.0 if LOC not available)</li>
|
---|
49 | * <li>tpr: true positive rate</li>
|
---|
50 | * <li>tnr: true negative rate</li>
|
---|
51 | * <li>fpr: false positive rate</li>
|
---|
52 | * <li>fnr: false negative rate</li>
|
---|
53 | * <li>tp: true positives</li>
|
---|
54 | * <li>fp: false positives</li>
|
---|
55 | * <li>tn: true negatives</li>
|
---|
56 | * <li>fn: false negatives</li>
|
---|
57 | * </ul>
|
---|
58 | *
|
---|
59 | * @author Steffen Herbold
|
---|
60 | */
|
---|
61 | public abstract class AbstractWekaEvaluation implements IEvaluationStrategy {
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * writer for the evaluation results
|
---|
65 | */
|
---|
66 | private PrintWriter output = new PrintWriter(System.out);
|
---|
67 |
|
---|
68 | private boolean outputIsSystemOut = true;
|
---|
69 |
|
---|
70 | private String configurationName = "default";
|
---|
71 |
|
---|
72 | /**
|
---|
73 | * Creates the Weka evaluator. Allows the creation of the evaluator in different ways, e.g., for
|
---|
74 | * cross-validation or evaluation on the test data.
|
---|
75 | *
|
---|
76 | * @param testdata
|
---|
77 | * test data
|
---|
78 | * @param classifier
|
---|
79 | * classifier used
|
---|
80 | * @return evaluator
|
---|
81 | */
|
---|
82 | protected abstract Evaluation createEvaluator(Instances testdata, Classifier classifier);
|
---|
83 |
|
---|
84 | /*
|
---|
85 | * (non-Javadoc)
|
---|
86 | *
|
---|
87 | * @see de.ugoe.cs.cpdp.eval.EvaluationStrategy#apply(weka.core.Instances, weka.core.Instances,
|
---|
88 | * java.util.List, boolean)
|
---|
89 | */
|
---|
90 | @Override
|
---|
91 | public void apply(Instances testdata,
|
---|
92 | Instances traindata,
|
---|
93 | List<ITrainer> trainers,
|
---|
94 | boolean writeHeader,
|
---|
95 | List<IResultStorage> storages)
|
---|
96 | {
|
---|
97 | final List<Classifier> classifiers = new LinkedList<>();
|
---|
98 | final List<ExperimentResult> experimentResults = new LinkedList<>();
|
---|
99 | String productName = testdata.relationName();
|
---|
100 |
|
---|
101 | for (ITrainer trainer : trainers) {
|
---|
102 | if (trainer instanceof IWekaCompatibleTrainer) {
|
---|
103 | classifiers.add(((IWekaCompatibleTrainer) trainer).getClassifier());
|
---|
104 | experimentResults.add(new ExperimentResult(configurationName, productName, ((IWekaCompatibleTrainer) trainer).getName()));
|
---|
105 | }
|
---|
106 | else {
|
---|
107 | throw new RuntimeException("The selected evaluator only support Weka classifiers");
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | if (writeHeader) {
|
---|
112 | output.append("version,size_test,size_training");
|
---|
113 | for (ITrainer trainer : trainers) {
|
---|
114 | output.append(",succHe_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
115 | output.append(",succZi_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
116 | output.append(",succG75_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
117 | output.append(",succG60_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
118 | output.append(",error_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
119 | output.append(",recall_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
120 | output.append(",precision_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
121 | output.append(",fscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
122 | output.append(",gscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
123 | output.append(",mcc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
124 | output.append(",auc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
125 | output.append(",aucec_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
126 | output.append(",tpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
127 | output.append(",tnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
128 | output.append(",fpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
129 | output.append(",fnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
130 | output.append(",tp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
131 | output.append(",fn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
132 | output.append(",tn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
133 | output.append(",fp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
---|
134 | }
|
---|
135 | output.append(StringTools.ENDLINE);
|
---|
136 | }
|
---|
137 |
|
---|
138 | output.append(productName);
|
---|
139 | output.append("," + testdata.numInstances());
|
---|
140 | output.append("," + traindata.numInstances());
|
---|
141 |
|
---|
142 | Evaluation eval = null;
|
---|
143 | Iterator<Classifier> classifierIter = classifiers.iterator();
|
---|
144 | Iterator<ExperimentResult> resultIter = experimentResults.iterator();
|
---|
145 | while (classifierIter.hasNext()) {
|
---|
146 | Classifier classifier = classifierIter.next();
|
---|
147 | eval = createEvaluator(testdata, classifier);
|
---|
148 |
|
---|
149 | double pf =
|
---|
150 | eval.numFalsePositives(1) / (eval.numFalsePositives(1) + eval.numTrueNegatives(1));
|
---|
151 | double gmeasure = 2 * eval.recall(1) * (1.0 - pf) / (eval.recall(1) + (1.0 - pf));
|
---|
152 | double aucec = calculateReviewEffort(testdata, classifier);
|
---|
153 | double succHe = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.5 ? 1.0 : 0.0;
|
---|
154 | double succZi = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.7 ? 1.0 : 0.0;
|
---|
155 | double succG75 = gmeasure > 0.75 ? 1.0 : 0.0;
|
---|
156 | double succG60 = gmeasure > 0.6 ? 1.0 : 0.0;
|
---|
157 |
|
---|
158 | output.append("," + succHe);
|
---|
159 | output.append("," + succZi);
|
---|
160 | output.append("," + succG75);
|
---|
161 | output.append("," + succG60);
|
---|
162 | output.append("," + eval.errorRate());
|
---|
163 | output.append("," + eval.recall(1));
|
---|
164 | output.append("," + eval.precision(1));
|
---|
165 | output.append("," + eval.fMeasure(1));
|
---|
166 | output.append("," + gmeasure);
|
---|
167 | output.append("," + eval.matthewsCorrelationCoefficient(1));
|
---|
168 | output.append("," + eval.areaUnderROC(1));
|
---|
169 | output.append("," + aucec);
|
---|
170 | output.append("," + eval.truePositiveRate(1));
|
---|
171 | output.append("," + eval.trueNegativeRate(1));
|
---|
172 | output.append("," + eval.falsePositiveRate(1));
|
---|
173 | output.append("," + eval.falseNegativeRate(1));
|
---|
174 | output.append("," + eval.numTruePositives(1));
|
---|
175 | output.append("," + eval.numFalseNegatives(1));
|
---|
176 | output.append("," + eval.numTrueNegatives(1));
|
---|
177 | output.append("," + eval.numFalsePositives(1));
|
---|
178 |
|
---|
179 | ExperimentResult result = resultIter.next();
|
---|
180 | result.setSizeTestData(testdata.numInstances());
|
---|
181 | result.setSizeTrainingData(traindata.numInstances());
|
---|
182 | result.setSuccHe(succHe);
|
---|
183 | result.setSuccZi(succZi);
|
---|
184 | result.setSuccG75(succG75);
|
---|
185 | result.setSuccG60(succG60);
|
---|
186 | result.setError(eval.errorRate());
|
---|
187 | result.setRecall(eval.recall(1));
|
---|
188 | result.setPrecision(eval.precision(1));
|
---|
189 | result.setFscore(eval.fMeasure(1));
|
---|
190 | result.setGscore(gmeasure);
|
---|
191 | result.setMcc(eval.matthewsCorrelationCoefficient(1));
|
---|
192 | result.setAuc(eval.areaUnderROC(1));
|
---|
193 | result.setAucec(aucec);
|
---|
194 | result.setTpr(eval.truePositiveRate(1));
|
---|
195 | result.setTnr(eval.trueNegativeRate(1));
|
---|
196 | result.setFpr(eval.falsePositiveRate(1));
|
---|
197 | result.setFnr(eval.falseNegativeRate(1));
|
---|
198 | result.setTp(eval.numTruePositives(1));
|
---|
199 | result.setFn(eval.numFalseNegatives(1));
|
---|
200 | result.setTn(eval.numTrueNegatives(1));
|
---|
201 | result.setFp(eval.numFalsePositives(1));
|
---|
202 | for( IResultStorage storage : storages ) {
|
---|
203 | storage.addResult(result);
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | output.append(StringTools.ENDLINE);
|
---|
208 | output.flush();
|
---|
209 | }
|
---|
210 |
|
---|
211 | private double calculateReviewEffort(Instances testdata, Classifier classifier) {
|
---|
212 |
|
---|
213 | final Attribute loc = testdata.attribute("loc");
|
---|
214 | if (loc == null) {
|
---|
215 | return 0.0;
|
---|
216 | }
|
---|
217 |
|
---|
218 | final List<Integer> bugPredicted = new ArrayList<>();
|
---|
219 | final List<Integer> nobugPredicted = new ArrayList<>();
|
---|
220 | double totalLoc = 0.0d;
|
---|
221 | int totalBugs = 0;
|
---|
222 | for (int i = 0; i < testdata.numInstances(); i++) {
|
---|
223 | try {
|
---|
224 | if (Double.compare(classifier.classifyInstance(testdata.instance(i)), 0.0d) == 0) {
|
---|
225 | nobugPredicted.add(i);
|
---|
226 | }
|
---|
227 | else {
|
---|
228 | bugPredicted.add(i);
|
---|
229 | }
|
---|
230 | }
|
---|
231 | catch (Exception e) {
|
---|
232 | throw new RuntimeException(
|
---|
233 | "unexpected error during the evaluation of the review effort",
|
---|
234 | e);
|
---|
235 | }
|
---|
236 | if (Double.compare(testdata.instance(i).classValue(), 1.0d) == 0) {
|
---|
237 | totalBugs++;
|
---|
238 | }
|
---|
239 | totalLoc += testdata.instance(i).value(loc);
|
---|
240 | }
|
---|
241 |
|
---|
242 | final List<Double> reviewLoc = new ArrayList<>(testdata.numInstances());
|
---|
243 | final List<Double> bugsFound = new ArrayList<>(testdata.numInstances());
|
---|
244 |
|
---|
245 | double currentBugsFound = 0;
|
---|
246 |
|
---|
247 | while (!bugPredicted.isEmpty()) {
|
---|
248 | double minLoc = Double.MAX_VALUE;
|
---|
249 | int minIndex = -1;
|
---|
250 | for (int i = 0; i < bugPredicted.size(); i++) {
|
---|
251 | double currentLoc = testdata.instance(bugPredicted.get(i)).value(loc);
|
---|
252 | if (currentLoc < minLoc) {
|
---|
253 | minIndex = i;
|
---|
254 | minLoc = currentLoc;
|
---|
255 | }
|
---|
256 | }
|
---|
257 | if (minIndex != -1) {
|
---|
258 | reviewLoc.add(minLoc / totalLoc);
|
---|
259 |
|
---|
260 | currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue();
|
---|
261 | bugsFound.add(currentBugsFound);
|
---|
262 |
|
---|
263 | bugPredicted.remove(minIndex);
|
---|
264 | }
|
---|
265 | else {
|
---|
266 | throw new RuntimeException("Shouldn't happen!");
|
---|
267 | }
|
---|
268 | }
|
---|
269 |
|
---|
270 | while (!nobugPredicted.isEmpty()) {
|
---|
271 | double minLoc = Double.MAX_VALUE;
|
---|
272 | int minIndex = -1;
|
---|
273 | for (int i = 0; i < nobugPredicted.size(); i++) {
|
---|
274 | double currentLoc = testdata.instance(nobugPredicted.get(i)).value(loc);
|
---|
275 | if (currentLoc < minLoc) {
|
---|
276 | minIndex = i;
|
---|
277 | minLoc = currentLoc;
|
---|
278 | }
|
---|
279 | }
|
---|
280 | if (minIndex != -1) {
|
---|
281 | reviewLoc.add(minLoc / totalLoc);
|
---|
282 |
|
---|
283 | currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue();
|
---|
284 | bugsFound.add(currentBugsFound);
|
---|
285 | nobugPredicted.remove(minIndex);
|
---|
286 | }
|
---|
287 | else {
|
---|
288 | throw new RuntimeException("Shouldn't happen!");
|
---|
289 | }
|
---|
290 | }
|
---|
291 |
|
---|
292 | double auc = 0.0;
|
---|
293 | for (int i = 0; i < bugsFound.size(); i++) {
|
---|
294 | auc += reviewLoc.get(i) * bugsFound.get(i) / totalBugs;
|
---|
295 | }
|
---|
296 |
|
---|
297 | return auc;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /*
|
---|
301 | * (non-Javadoc)
|
---|
302 | *
|
---|
303 | * @see de.ugoe.cs.cpdp.Parameterizable#setParameter(java.lang.String)
|
---|
304 | */
|
---|
305 | @Override
|
---|
306 | public void setParameter(String parameters) {
|
---|
307 | if (output != null && !outputIsSystemOut) {
|
---|
308 | output.close();
|
---|
309 | }
|
---|
310 | if ("system.out".equals(parameters) || "".equals(parameters)) {
|
---|
311 | output = new PrintWriter(System.out);
|
---|
312 | outputIsSystemOut = true;
|
---|
313 | }
|
---|
314 | else {
|
---|
315 | try {
|
---|
316 | output = new PrintWriter(new FileOutputStream(parameters));
|
---|
317 | outputIsSystemOut = false;
|
---|
318 | int filenameStart = parameters.lastIndexOf('/')+1;
|
---|
319 | int filenameEnd = parameters.lastIndexOf('.');
|
---|
320 | configurationName = parameters.substring(filenameStart, filenameEnd);
|
---|
321 | }
|
---|
322 | catch (FileNotFoundException e) {
|
---|
323 | throw new RuntimeException(e);
|
---|
324 | }
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|