| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.eval;
|
|---|
| 16 |
|
|---|
| 17 | import java.io.FileNotFoundException;
|
|---|
| 18 | import java.io.FileOutputStream;
|
|---|
| 19 | import java.io.PrintWriter;
|
|---|
| 20 | import java.util.ArrayList;
|
|---|
| 21 | import java.util.Iterator;
|
|---|
| 22 | import java.util.LinkedList;
|
|---|
| 23 | import java.util.List;
|
|---|
| 24 |
|
|---|
| 25 | import de.ugoe.cs.cpdp.training.ITrainer;
|
|---|
| 26 | import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer;
|
|---|
| 27 | import de.ugoe.cs.util.StringTools;
|
|---|
| 28 | import weka.classifiers.Classifier;
|
|---|
| 29 | import weka.classifiers.Evaluation;
|
|---|
| 30 | import weka.core.Attribute;
|
|---|
| 31 | import weka.core.Instances;
|
|---|
| 32 |
|
|---|
| 33 | /**
|
|---|
| 34 | * Base class for the evaluation of results of classifiers compatible with the {@link Classifier}
|
|---|
| 35 | * interface. For each classifier, the following metrics are calculated:
|
|---|
| 36 | * <ul>
|
|---|
| 37 | * <li>succHe: Success with recall>0.7, precision>0.5</li>
|
|---|
| 38 | * <li>succZi: Success with recall>0.7, precision>0.7</li>
|
|---|
| 39 | * <li>succG75: Success with gscore>0.75</li>
|
|---|
| 40 | * <li>succG60: Success with gscore>0.6</li>
|
|---|
| 41 | * <li>error</li>
|
|---|
| 42 | * <li>recall</li>
|
|---|
| 43 | * <li>precision</li>
|
|---|
| 44 | * <li>fscore</li>
|
|---|
| 45 | * <li>gscore</li>
|
|---|
| 46 | * <li>MCC</li>
|
|---|
| 47 | * <li>AUC</li>
|
|---|
| 48 | * <li>AUCEC (weighted by LOC, if applicable; 0.0 if LOC not available)</li>
|
|---|
| 49 | * <li>tpr: true positive rate</li>
|
|---|
| 50 | * <li>tnr: true negative rate</li>
|
|---|
| 51 | * <li>fpr: false positive rate</li>
|
|---|
| 52 | * <li>fnr: false negative rate</li>
|
|---|
| 53 | * <li>tp: true positives</li>
|
|---|
| 54 | * <li>fp: false positives</li>
|
|---|
| 55 | * <li>tn: true negatives</li>
|
|---|
| 56 | * <li>fn: false negatives</li>
|
|---|
| 57 | * </ul>
|
|---|
| 58 | *
|
|---|
| 59 | * @author Steffen Herbold
|
|---|
| 60 | */
|
|---|
| 61 | public abstract class AbstractWekaEvaluation implements IEvaluationStrategy {
|
|---|
| 62 |
|
|---|
| 63 | /**
|
|---|
| 64 | * writer for the evaluation results
|
|---|
| 65 | */
|
|---|
| 66 | private PrintWriter output = new PrintWriter(System.out);
|
|---|
| 67 |
|
|---|
| 68 | private boolean outputIsSystemOut = true;
|
|---|
| 69 |
|
|---|
| 70 | private String configurationName = "default";
|
|---|
| 71 |
|
|---|
| 72 | /**
|
|---|
| 73 | * Creates the Weka evaluator. Allows the creation of the evaluator in different ways, e.g., for
|
|---|
| 74 | * cross-validation or evaluation on the test data.
|
|---|
| 75 | *
|
|---|
| 76 | * @param testdata
|
|---|
| 77 | * test data
|
|---|
| 78 | * @param classifier
|
|---|
| 79 | * classifier used
|
|---|
| 80 | * @return evaluator
|
|---|
| 81 | */
|
|---|
| 82 | protected abstract Evaluation createEvaluator(Instances testdata, Classifier classifier);
|
|---|
| 83 |
|
|---|
| 84 | /*
|
|---|
| 85 | * (non-Javadoc)
|
|---|
| 86 | *
|
|---|
| 87 | * @see de.ugoe.cs.cpdp.eval.EvaluationStrategy#apply(weka.core.Instances, weka.core.Instances,
|
|---|
| 88 | * java.util.List, boolean)
|
|---|
| 89 | */
|
|---|
| 90 | @Override
|
|---|
| 91 | public void apply(Instances testdata,
|
|---|
| 92 | Instances traindata,
|
|---|
| 93 | List<ITrainer> trainers,
|
|---|
| 94 | boolean writeHeader,
|
|---|
| 95 | List<IResultStorage> storages)
|
|---|
| 96 | {
|
|---|
| 97 | final List<Classifier> classifiers = new LinkedList<>();
|
|---|
| 98 | final List<ExperimentResult> experimentResults = new LinkedList<>();
|
|---|
| 99 | String productName = testdata.relationName();
|
|---|
| 100 |
|
|---|
| 101 | for (ITrainer trainer : trainers) {
|
|---|
| 102 | if (trainer instanceof IWekaCompatibleTrainer) {
|
|---|
| 103 | classifiers.add(((IWekaCompatibleTrainer) trainer).getClassifier());
|
|---|
| 104 | experimentResults.add(new ExperimentResult(configurationName, productName, ((IWekaCompatibleTrainer) trainer).getName()));
|
|---|
| 105 | }
|
|---|
| 106 | else {
|
|---|
| 107 | throw new RuntimeException("The selected evaluator only support Weka classifiers");
|
|---|
| 108 | }
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| 111 | if (writeHeader) {
|
|---|
| 112 | output.append("version,size_test,size_training");
|
|---|
| 113 | for (ITrainer trainer : trainers) {
|
|---|
| 114 | output.append(",succHe_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 115 | output.append(",succZi_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 116 | output.append(",succG75_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 117 | output.append(",succG60_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 118 | output.append(",error_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 119 | output.append(",recall_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 120 | output.append(",precision_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 121 | output.append(",fscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 122 | output.append(",gscore_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 123 | output.append(",mcc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 124 | output.append(",auc_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 125 | output.append(",aucec_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 126 | output.append(",tpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 127 | output.append(",tnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 128 | output.append(",fpr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 129 | output.append(",fnr_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 130 | output.append(",tp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 131 | output.append(",fn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 132 | output.append(",tn_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 133 | output.append(",fp_" + ((IWekaCompatibleTrainer) trainer).getName());
|
|---|
| 134 | }
|
|---|
| 135 | output.append(StringTools.ENDLINE);
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | output.append(productName);
|
|---|
| 139 | output.append("," + testdata.numInstances());
|
|---|
| 140 | output.append("," + traindata.numInstances());
|
|---|
| 141 |
|
|---|
| 142 | Evaluation eval = null;
|
|---|
| 143 | Iterator<Classifier> classifierIter = classifiers.iterator();
|
|---|
| 144 | Iterator<ExperimentResult> resultIter = experimentResults.iterator();
|
|---|
| 145 | while (classifierIter.hasNext()) {
|
|---|
| 146 | Classifier classifier = classifierIter.next();
|
|---|
| 147 | eval = createEvaluator(testdata, classifier);
|
|---|
| 148 |
|
|---|
| 149 | double pf =
|
|---|
| 150 | eval.numFalsePositives(1) / (eval.numFalsePositives(1) + eval.numTrueNegatives(1));
|
|---|
| 151 | double gmeasure = 2 * eval.recall(1) * (1.0 - pf) / (eval.recall(1) + (1.0 - pf));
|
|---|
| 152 | double aucec = calculateReviewEffort(testdata, classifier);
|
|---|
| 153 | double succHe = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.5 ? 1.0 : 0.0;
|
|---|
| 154 | double succZi = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.7 ? 1.0 : 0.0;
|
|---|
| 155 | double succG75 = gmeasure > 0.75 ? 1.0 : 0.0;
|
|---|
| 156 | double succG60 = gmeasure > 0.6 ? 1.0 : 0.0;
|
|---|
| 157 |
|
|---|
| 158 | output.append("," + succHe);
|
|---|
| 159 | output.append("," + succZi);
|
|---|
| 160 | output.append("," + succG75);
|
|---|
| 161 | output.append("," + succG60);
|
|---|
| 162 | output.append("," + eval.errorRate());
|
|---|
| 163 | output.append("," + eval.recall(1));
|
|---|
| 164 | output.append("," + eval.precision(1));
|
|---|
| 165 | output.append("," + eval.fMeasure(1));
|
|---|
| 166 | output.append("," + gmeasure);
|
|---|
| 167 | output.append("," + eval.matthewsCorrelationCoefficient(1));
|
|---|
| 168 | output.append("," + eval.areaUnderROC(1));
|
|---|
| 169 | output.append("," + aucec);
|
|---|
| 170 | output.append("," + eval.truePositiveRate(1));
|
|---|
| 171 | output.append("," + eval.trueNegativeRate(1));
|
|---|
| 172 | output.append("," + eval.falsePositiveRate(1));
|
|---|
| 173 | output.append("," + eval.falseNegativeRate(1));
|
|---|
| 174 | output.append("," + eval.numTruePositives(1));
|
|---|
| 175 | output.append("," + eval.numFalseNegatives(1));
|
|---|
| 176 | output.append("," + eval.numTrueNegatives(1));
|
|---|
| 177 | output.append("," + eval.numFalsePositives(1));
|
|---|
| 178 |
|
|---|
| 179 | ExperimentResult result = resultIter.next();
|
|---|
| 180 | result.setSizeTestData(testdata.numInstances());
|
|---|
| 181 | result.setSizeTrainingData(traindata.numInstances());
|
|---|
| 182 | result.setSuccHe(succHe);
|
|---|
| 183 | result.setSuccZi(succZi);
|
|---|
| 184 | result.setSuccG75(succG75);
|
|---|
| 185 | result.setSuccG60(succG60);
|
|---|
| 186 | result.setError(eval.errorRate());
|
|---|
| 187 | result.setRecall(eval.recall(1));
|
|---|
| 188 | result.setPrecision(eval.precision(1));
|
|---|
| 189 | result.setFscore(eval.fMeasure(1));
|
|---|
| 190 | result.setGscore(gmeasure);
|
|---|
| 191 | result.setMcc(eval.matthewsCorrelationCoefficient(1));
|
|---|
| 192 | result.setAuc(eval.areaUnderROC(1));
|
|---|
| 193 | result.setAucec(aucec);
|
|---|
| 194 | result.setTpr(eval.truePositiveRate(1));
|
|---|
| 195 | result.setTnr(eval.trueNegativeRate(1));
|
|---|
| 196 | result.setFpr(eval.falsePositiveRate(1));
|
|---|
| 197 | result.setFnr(eval.falseNegativeRate(1));
|
|---|
| 198 | result.setTp(eval.numTruePositives(1));
|
|---|
| 199 | result.setFn(eval.numFalseNegatives(1));
|
|---|
| 200 | result.setTn(eval.numTrueNegatives(1));
|
|---|
| 201 | result.setFp(eval.numFalsePositives(1));
|
|---|
| 202 | for( IResultStorage storage : storages ) {
|
|---|
| 203 | storage.addResult(result);
|
|---|
| 204 | }
|
|---|
| 205 | }
|
|---|
| 206 |
|
|---|
| 207 | output.append(StringTools.ENDLINE);
|
|---|
| 208 | output.flush();
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | private double calculateReviewEffort(Instances testdata, Classifier classifier) {
|
|---|
| 212 |
|
|---|
| 213 | final Attribute loc = testdata.attribute("loc");
|
|---|
| 214 | if (loc == null) {
|
|---|
| 215 | return 0.0;
|
|---|
| 216 | }
|
|---|
| 217 |
|
|---|
| 218 | final List<Integer> bugPredicted = new ArrayList<>();
|
|---|
| 219 | final List<Integer> nobugPredicted = new ArrayList<>();
|
|---|
| 220 | double totalLoc = 0.0d;
|
|---|
| 221 | int totalBugs = 0;
|
|---|
| 222 | for (int i = 0; i < testdata.numInstances(); i++) {
|
|---|
| 223 | try {
|
|---|
| 224 | if (Double.compare(classifier.classifyInstance(testdata.instance(i)), 0.0d) == 0) {
|
|---|
| 225 | nobugPredicted.add(i);
|
|---|
| 226 | }
|
|---|
| 227 | else {
|
|---|
| 228 | bugPredicted.add(i);
|
|---|
| 229 | }
|
|---|
| 230 | }
|
|---|
| 231 | catch (Exception e) {
|
|---|
| 232 | throw new RuntimeException(
|
|---|
| 233 | "unexpected error during the evaluation of the review effort",
|
|---|
| 234 | e);
|
|---|
| 235 | }
|
|---|
| 236 | if (Double.compare(testdata.instance(i).classValue(), 1.0d) == 0) {
|
|---|
| 237 | totalBugs++;
|
|---|
| 238 | }
|
|---|
| 239 | totalLoc += testdata.instance(i).value(loc);
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | final List<Double> reviewLoc = new ArrayList<>(testdata.numInstances());
|
|---|
| 243 | final List<Double> bugsFound = new ArrayList<>(testdata.numInstances());
|
|---|
| 244 |
|
|---|
| 245 | double currentBugsFound = 0;
|
|---|
| 246 |
|
|---|
| 247 | while (!bugPredicted.isEmpty()) {
|
|---|
| 248 | double minLoc = Double.MAX_VALUE;
|
|---|
| 249 | int minIndex = -1;
|
|---|
| 250 | for (int i = 0; i < bugPredicted.size(); i++) {
|
|---|
| 251 | double currentLoc = testdata.instance(bugPredicted.get(i)).value(loc);
|
|---|
| 252 | if (currentLoc < minLoc) {
|
|---|
| 253 | minIndex = i;
|
|---|
| 254 | minLoc = currentLoc;
|
|---|
| 255 | }
|
|---|
| 256 | }
|
|---|
| 257 | if (minIndex != -1) {
|
|---|
| 258 | reviewLoc.add(minLoc / totalLoc);
|
|---|
| 259 |
|
|---|
| 260 | currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue();
|
|---|
| 261 | bugsFound.add(currentBugsFound);
|
|---|
| 262 |
|
|---|
| 263 | bugPredicted.remove(minIndex);
|
|---|
| 264 | }
|
|---|
| 265 | else {
|
|---|
| 266 | throw new RuntimeException("Shouldn't happen!");
|
|---|
| 267 | }
|
|---|
| 268 | }
|
|---|
| 269 |
|
|---|
| 270 | while (!nobugPredicted.isEmpty()) {
|
|---|
| 271 | double minLoc = Double.MAX_VALUE;
|
|---|
| 272 | int minIndex = -1;
|
|---|
| 273 | for (int i = 0; i < nobugPredicted.size(); i++) {
|
|---|
| 274 | double currentLoc = testdata.instance(nobugPredicted.get(i)).value(loc);
|
|---|
| 275 | if (currentLoc < minLoc) {
|
|---|
| 276 | minIndex = i;
|
|---|
| 277 | minLoc = currentLoc;
|
|---|
| 278 | }
|
|---|
| 279 | }
|
|---|
| 280 | if (minIndex != -1) {
|
|---|
| 281 | reviewLoc.add(minLoc / totalLoc);
|
|---|
| 282 |
|
|---|
| 283 | currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue();
|
|---|
| 284 | bugsFound.add(currentBugsFound);
|
|---|
| 285 | nobugPredicted.remove(minIndex);
|
|---|
| 286 | }
|
|---|
| 287 | else {
|
|---|
| 288 | throw new RuntimeException("Shouldn't happen!");
|
|---|
| 289 | }
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | double auc = 0.0;
|
|---|
| 293 | for (int i = 0; i < bugsFound.size(); i++) {
|
|---|
| 294 | auc += reviewLoc.get(i) * bugsFound.get(i) / totalBugs;
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | return auc;
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | /*
|
|---|
| 301 | * (non-Javadoc)
|
|---|
| 302 | *
|
|---|
| 303 | * @see de.ugoe.cs.cpdp.Parameterizable#setParameter(java.lang.String)
|
|---|
| 304 | */
|
|---|
| 305 | @Override
|
|---|
| 306 | public void setParameter(String parameters) {
|
|---|
| 307 | if (output != null && !outputIsSystemOut) {
|
|---|
| 308 | output.close();
|
|---|
| 309 | }
|
|---|
| 310 | if ("system.out".equals(parameters) || "".equals(parameters)) {
|
|---|
| 311 | output = new PrintWriter(System.out);
|
|---|
| 312 | outputIsSystemOut = true;
|
|---|
| 313 | }
|
|---|
| 314 | else {
|
|---|
| 315 | try {
|
|---|
| 316 | output = new PrintWriter(new FileOutputStream(parameters));
|
|---|
| 317 | outputIsSystemOut = false;
|
|---|
| 318 | int filenameStart = parameters.lastIndexOf('/')+1;
|
|---|
| 319 | int filenameEnd = parameters.lastIndexOf('.');
|
|---|
| 320 | configurationName = parameters.substring(filenameStart, filenameEnd);
|
|---|
| 321 | }
|
|---|
| 322 | catch (FileNotFoundException e) {
|
|---|
| 323 | throw new RuntimeException(e);
|
|---|
| 324 | }
|
|---|
| 325 | }
|
|---|
| 326 | }
|
|---|
| 327 | }
|
|---|