| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.execution;
|
|---|
| 16 |
|
|---|
| 17 | import java.io.File;
|
|---|
| 18 | import java.util.Collections;
|
|---|
| 19 | import java.util.LinkedList;
|
|---|
| 20 | import java.util.List;
|
|---|
| 21 | import java.util.logging.Level;
|
|---|
| 22 |
|
|---|
| 23 | import org.apache.commons.collections4.list.SetUniqueList;
|
|---|
| 24 |
|
|---|
| 25 | import de.ugoe.cs.cpdp.ExperimentConfiguration;
|
|---|
| 26 | import de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy;
|
|---|
| 27 | import de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy;
|
|---|
| 28 | import de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy;
|
|---|
| 29 | import de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy;
|
|---|
| 30 | import de.ugoe.cs.cpdp.eval.IEvaluationStrategy;
|
|---|
| 31 | import de.ugoe.cs.cpdp.loader.IVersionLoader;
|
|---|
| 32 | import de.ugoe.cs.cpdp.training.ISetWiseTestdataAwareTrainingStrategy;
|
|---|
| 33 | import de.ugoe.cs.cpdp.training.ISetWiseTrainingStrategy;
|
|---|
| 34 | import de.ugoe.cs.cpdp.training.ITestAwareTrainingStrategy;
|
|---|
| 35 | import de.ugoe.cs.cpdp.training.ITrainer;
|
|---|
| 36 | import de.ugoe.cs.cpdp.training.ITrainingStrategy;
|
|---|
| 37 | import de.ugoe.cs.cpdp.versions.IVersionFilter;
|
|---|
| 38 | import de.ugoe.cs.cpdp.versions.SoftwareVersion;
|
|---|
| 39 | import de.ugoe.cs.util.console.Console;
|
|---|
| 40 | import weka.core.Instances;
|
|---|
| 41 |
|
|---|
| 42 | /**
|
|---|
| 43 | * Class responsible for executing an experiment according to an {@link ExperimentConfiguration}.
|
|---|
| 44 | * The steps of an experiment are as follows:
|
|---|
| 45 | * <ul>
|
|---|
| 46 | * <li>load the data from the provided data path</li>
|
|---|
| 47 | * <li>filter the data sets according to the provided version filters</li>
|
|---|
| 48 | * <li>execute the following steps for each data sets as test data that is not ignored through the
|
|---|
| 49 | * test version filter:
|
|---|
| 50 | * <ul>
|
|---|
| 51 | * <li>filter the data sets to setup the candidate training data:
|
|---|
| 52 | * <ul>
|
|---|
| 53 | * <li>remove all data sets from the same project</li>
|
|---|
| 54 | * <li>filter all data sets according to the training data filter
|
|---|
| 55 | * </ul>
|
|---|
| 56 | * </li>
|
|---|
| 57 | * <li>apply the setwise preprocessors</li>
|
|---|
| 58 | * <li>apply the setwise data selection algorithms</li>
|
|---|
| 59 | * <li>apply the setwise postprocessors</li>
|
|---|
| 60 | * <li>train the setwise training classifiers</li>
|
|---|
| 61 | * <li>unify all remaining training data into one data set</li>
|
|---|
| 62 | * <li>apply the preprocessors</li>
|
|---|
| 63 | * <li>apply the pointwise data selection algorithms</li>
|
|---|
| 64 | * <li>apply the postprocessors</li>
|
|---|
| 65 | * <li>train the normal classifiers</li>
|
|---|
| 66 | * <li>evaluate the results for all trained classifiers on the training data</li>
|
|---|
| 67 | * </ul>
|
|---|
| 68 | * </li>
|
|---|
| 69 | * </ul>
|
|---|
| 70 | *
|
|---|
| 71 | * Note that this class implements {@link Runnable}, i.e., each experiment can be started in its own
|
|---|
| 72 | * thread.
|
|---|
| 73 | *
|
|---|
| 74 | * @author Steffen Herbold
|
|---|
| 75 | */
|
|---|
| 76 | public abstract class AbstractCrossProjectExperiment implements IExecutionStrategy {
|
|---|
| 77 |
|
|---|
| 78 | /**
|
|---|
| 79 | * configuration of the experiment
|
|---|
| 80 | */
|
|---|
| 81 | protected final ExperimentConfiguration config;
|
|---|
| 82 |
|
|---|
| 83 | /**
|
|---|
| 84 | * Constructor. Creates a new experiment based on a configuration.
|
|---|
| 85 | *
|
|---|
| 86 | * @param config
|
|---|
| 87 | * configuration of the experiment
|
|---|
| 88 | */
|
|---|
| 89 | public AbstractCrossProjectExperiment(ExperimentConfiguration config) {
|
|---|
| 90 | this.config = config;
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | /**
|
|---|
| 94 | * <p>
|
|---|
| 95 | * Defines which products are allowed for training.
|
|---|
| 96 | * </p>
|
|---|
| 97 | *
|
|---|
| 98 | * @param trainingVersion
|
|---|
| 99 | * training version
|
|---|
| 100 | * @param testVersion
|
|---|
| 101 | * test candidate
|
|---|
| 102 | * @return true if test candidate can be used for training
|
|---|
| 103 | */
|
|---|
| 104 | protected abstract boolean isTrainingVersion(SoftwareVersion trainingVersion,
|
|---|
| 105 | SoftwareVersion testVersion);
|
|---|
| 106 |
|
|---|
| 107 | /**
|
|---|
| 108 | * Helper method that combines a set of Weka {@link Instances} sets into a single
|
|---|
| 109 | * {@link Instances} set.
|
|---|
| 110 | *
|
|---|
| 111 | * @param traindataSet
|
|---|
| 112 | * set of {@link Instances} to be combines
|
|---|
| 113 | * @return single {@link Instances} set
|
|---|
| 114 | */
|
|---|
| 115 | public static Instances makeSingleTrainingSet(SetUniqueList<Instances> traindataSet) {
|
|---|
| 116 | Instances traindataFull = null;
|
|---|
| 117 | for (Instances traindata : traindataSet) {
|
|---|
| 118 | if (traindataFull == null) {
|
|---|
| 119 | traindataFull = new Instances(traindata);
|
|---|
| 120 | }
|
|---|
| 121 | else {
|
|---|
| 122 | for (int i = 0; i < traindata.numInstances(); i++) {
|
|---|
| 123 | traindataFull.add(traindata.instance(i));
|
|---|
| 124 | }
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 | return traindataFull;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | /**
|
|---|
| 131 | * Executes the experiment with the steps as described in the class comment.
|
|---|
| 132 | *
|
|---|
| 133 | * @see Runnable#run()
|
|---|
| 134 | */
|
|---|
| 135 | @Override
|
|---|
| 136 | public void run() {
|
|---|
| 137 | final List<SoftwareVersion> versions = new LinkedList<>();
|
|---|
| 138 |
|
|---|
| 139 | for (IVersionLoader loader : config.getLoaders()) {
|
|---|
| 140 | versions.addAll(loader.load());
|
|---|
| 141 | }
|
|---|
| 142 |
|
|---|
| 143 | for (IVersionFilter filter : config.getVersionFilters()) {
|
|---|
| 144 | filter.apply(versions);
|
|---|
| 145 | }
|
|---|
| 146 | boolean writeHeader = true;
|
|---|
| 147 | int versionCount = 1;
|
|---|
| 148 | int testVersionCount = 0;
|
|---|
| 149 |
|
|---|
| 150 | for (SoftwareVersion testVersion : versions) {
|
|---|
| 151 | if (isVersion(testVersion, config.getTestVersionFilters())) {
|
|---|
| 152 | testVersionCount++;
|
|---|
| 153 | }
|
|---|
| 154 | }
|
|---|
| 155 |
|
|---|
| 156 | // sort versions
|
|---|
| 157 | Collections.sort(versions);
|
|---|
| 158 |
|
|---|
| 159 | for (SoftwareVersion testVersion : versions) {
|
|---|
| 160 | if (isVersion(testVersion, config.getTestVersionFilters())) {
|
|---|
| 161 | Console.traceln(Level.INFO,
|
|---|
| 162 | String.format("[%s] [%02d/%02d] %s: starting",
|
|---|
| 163 | config.getExperimentName(), versionCount,
|
|---|
| 164 | testVersionCount, testVersion.getVersion()));
|
|---|
| 165 |
|
|---|
| 166 | // Setup testdata and training data
|
|---|
| 167 | Instances testdata = testVersion.getInstances();
|
|---|
| 168 | SetUniqueList<Instances> traindataSet =
|
|---|
| 169 | SetUniqueList.setUniqueList(new LinkedList<Instances>());
|
|---|
| 170 | for (SoftwareVersion trainingVersion : versions) {
|
|---|
| 171 | if (isVersion(trainingVersion, config.getTrainingVersionFilters())) {
|
|---|
| 172 | if (trainingVersion != testVersion) {
|
|---|
| 173 | if (isTrainingVersion(trainingVersion, testVersion)) {
|
|---|
| 174 | traindataSet.add(trainingVersion.getInstances());
|
|---|
| 175 | }
|
|---|
| 176 | }
|
|---|
| 177 | }
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | for (ISetWiseProcessingStrategy processor : config.getSetWisePreprocessors()) {
|
|---|
| 181 | Console.traceln(Level.FINE,
|
|---|
| 182 | String.format(
|
|---|
| 183 | "[%s] [%02d/%02d] %s: applying setwise preprocessor %s",
|
|---|
| 184 | config.getExperimentName(), versionCount,
|
|---|
| 185 | testVersionCount, testVersion.getVersion(),
|
|---|
| 186 | processor.getClass().getName()));
|
|---|
| 187 | processor.apply(testdata, traindataSet);
|
|---|
| 188 | }
|
|---|
| 189 | for (ISetWiseDataselectionStrategy dataselector : config.getSetWiseSelectors()) {
|
|---|
| 190 | Console
|
|---|
| 191 | .traceln(Level.FINE,
|
|---|
| 192 | String.format("[%s] [%02d/%02d] %s: applying setwise selection %s",
|
|---|
| 193 | config.getExperimentName(), versionCount,
|
|---|
| 194 | testVersionCount, testVersion.getVersion(),
|
|---|
| 195 | dataselector.getClass().getName()));
|
|---|
| 196 | dataselector.apply(testdata, traindataSet);
|
|---|
| 197 | }
|
|---|
| 198 | for (ISetWiseProcessingStrategy processor : config.getSetWisePostprocessors()) {
|
|---|
| 199 | Console.traceln(Level.FINE,
|
|---|
| 200 | String.format(
|
|---|
| 201 | "[%s] [%02d/%02d] %s: applying setwise postprocessor %s",
|
|---|
| 202 | config.getExperimentName(), versionCount,
|
|---|
| 203 | testVersionCount, testVersion.getVersion(),
|
|---|
| 204 | processor.getClass().getName()));
|
|---|
| 205 | processor.apply(testdata, traindataSet);
|
|---|
| 206 | }
|
|---|
| 207 | for (ISetWiseTrainingStrategy setwiseTrainer : config.getSetWiseTrainers()) {
|
|---|
| 208 | Console
|
|---|
| 209 | .traceln(Level.FINE,
|
|---|
| 210 | String.format("[%s] [%02d/%02d] %s: applying setwise trainer %s",
|
|---|
| 211 | config.getExperimentName(), versionCount,
|
|---|
| 212 | testVersionCount, testVersion.getVersion(),
|
|---|
| 213 | setwiseTrainer.getName()));
|
|---|
| 214 | setwiseTrainer.apply(traindataSet);
|
|---|
| 215 | }
|
|---|
| 216 | for (ISetWiseTestdataAwareTrainingStrategy setwiseTestdataAwareTrainer : config
|
|---|
| 217 | .getSetWiseTestdataAwareTrainers())
|
|---|
| 218 | {
|
|---|
| 219 | Console.traceln(Level.FINE,
|
|---|
| 220 | String.format(
|
|---|
| 221 | "[%s] [%02d/%02d] %s: applying testdata aware setwise trainer %s",
|
|---|
| 222 | config.getExperimentName(), versionCount,
|
|---|
| 223 | testVersionCount, testVersion.getVersion(),
|
|---|
| 224 | setwiseTestdataAwareTrainer.getName()));
|
|---|
| 225 | setwiseTestdataAwareTrainer.apply(traindataSet, testdata);
|
|---|
| 226 | }
|
|---|
| 227 | Instances traindata = makeSingleTrainingSet(traindataSet);
|
|---|
| 228 | for (IProcessesingStrategy processor : config.getPreProcessors()) {
|
|---|
| 229 | Console.traceln(Level.FINE,
|
|---|
| 230 | String.format("[%s] [%02d/%02d] %s: applying preprocessor %s",
|
|---|
| 231 | config.getExperimentName(), versionCount,
|
|---|
| 232 | testVersionCount, testVersion.getVersion(),
|
|---|
| 233 | processor.getClass().getName()));
|
|---|
| 234 | processor.apply(testdata, traindata);
|
|---|
| 235 | }
|
|---|
| 236 | for (IPointWiseDataselectionStrategy dataselector : config
|
|---|
| 237 | .getPointWiseSelectors())
|
|---|
| 238 | {
|
|---|
| 239 | Console.traceln(Level.FINE,
|
|---|
| 240 | String.format(
|
|---|
| 241 | "[%s] [%02d/%02d] %s: applying pointwise selection %s",
|
|---|
| 242 | config.getExperimentName(), versionCount,
|
|---|
| 243 | testVersionCount, testVersion.getVersion(),
|
|---|
| 244 | dataselector.getClass().getName()));
|
|---|
| 245 | traindata = dataselector.apply(testdata, traindata);
|
|---|
| 246 | }
|
|---|
| 247 | for (IProcessesingStrategy processor : config.getPostProcessors()) {
|
|---|
| 248 | Console.traceln(Level.FINE,
|
|---|
| 249 | String.format(
|
|---|
| 250 | "[%s] [%02d/%02d] %s: applying setwise postprocessor %s",
|
|---|
| 251 | config.getExperimentName(), versionCount,
|
|---|
| 252 | testVersionCount, testVersion.getVersion(),
|
|---|
| 253 | processor.getClass().getName()));
|
|---|
| 254 | processor.apply(testdata, traindata);
|
|---|
| 255 | }
|
|---|
| 256 | for (ITrainingStrategy trainer : config.getTrainers()) {
|
|---|
| 257 | Console.traceln(Level.FINE,
|
|---|
| 258 | String.format("[%s] [%02d/%02d] %s: applying trainer %s",
|
|---|
| 259 | config.getExperimentName(), versionCount,
|
|---|
| 260 | testVersionCount, testVersion.getVersion(),
|
|---|
| 261 | trainer.getName()));
|
|---|
| 262 | trainer.apply(traindata);
|
|---|
| 263 | }
|
|---|
| 264 | for (ITestAwareTrainingStrategy trainer : config.getTestAwareTrainers()) {
|
|---|
| 265 | Console.traceln(Level.FINE,
|
|---|
| 266 | String.format("[%s] [%02d/%02d] %s: applying trainer %s",
|
|---|
| 267 | config.getExperimentName(), versionCount,
|
|---|
| 268 | testVersionCount, testVersion.getVersion(),
|
|---|
| 269 | trainer.getName()));
|
|---|
| 270 | trainer.apply(testdata, traindata);
|
|---|
| 271 | }
|
|---|
| 272 | File resultsDir = new File(config.getResultsPath());
|
|---|
| 273 | if (!resultsDir.exists()) {
|
|---|
| 274 | resultsDir.mkdir();
|
|---|
| 275 | }
|
|---|
| 276 | for (IEvaluationStrategy evaluator : config.getEvaluators()) {
|
|---|
| 277 | Console.traceln(Level.FINE,
|
|---|
| 278 | String.format("[%s] [%02d/%02d] %s: applying evaluator %s",
|
|---|
| 279 | config.getExperimentName(), versionCount,
|
|---|
| 280 | testVersionCount, testVersion.getVersion(),
|
|---|
| 281 | evaluator.getClass().getName()));
|
|---|
| 282 | List<ITrainer> allTrainers = new LinkedList<>();
|
|---|
| 283 | for (ISetWiseTrainingStrategy setwiseTrainer : config.getSetWiseTrainers()) {
|
|---|
| 284 | allTrainers.add(setwiseTrainer);
|
|---|
| 285 | }
|
|---|
| 286 | for (ISetWiseTestdataAwareTrainingStrategy setwiseTestdataAwareTrainer : config
|
|---|
| 287 | .getSetWiseTestdataAwareTrainers())
|
|---|
| 288 | {
|
|---|
| 289 | allTrainers.add(setwiseTestdataAwareTrainer);
|
|---|
| 290 | }
|
|---|
| 291 | for (ITrainingStrategy trainer : config.getTrainers()) {
|
|---|
| 292 | allTrainers.add(trainer);
|
|---|
| 293 | }
|
|---|
| 294 | for (ITestAwareTrainingStrategy trainer : config.getTestAwareTrainers()) {
|
|---|
| 295 | allTrainers.add(trainer);
|
|---|
| 296 | }
|
|---|
| 297 | if (writeHeader) {
|
|---|
| 298 | evaluator.setParameter(config.getResultsPath() + "/" +
|
|---|
| 299 | config.getExperimentName() + ".csv");
|
|---|
| 300 | }
|
|---|
| 301 | evaluator.apply(testdata, traindata, allTrainers, writeHeader, config.getResultStorages());
|
|---|
| 302 | writeHeader = false;
|
|---|
| 303 | }
|
|---|
| 304 | Console.traceln(Level.INFO,
|
|---|
| 305 | String.format("[%s] [%02d/%02d] %s: finished",
|
|---|
| 306 | config.getExperimentName(), versionCount,
|
|---|
| 307 | testVersionCount, testVersion.getVersion()));
|
|---|
| 308 | versionCount++;
|
|---|
| 309 | }
|
|---|
| 310 | }
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 | /**
|
|---|
| 314 | * Helper method that checks if a version passes all filters.
|
|---|
| 315 | *
|
|---|
| 316 | * @param version
|
|---|
| 317 | * version that is checked
|
|---|
| 318 | * @param filters
|
|---|
| 319 | * list of the filters
|
|---|
| 320 | * @return true, if the version passes all filters, false otherwise
|
|---|
| 321 | */
|
|---|
| 322 | private boolean isVersion(SoftwareVersion version, List<IVersionFilter> filters) {
|
|---|
| 323 | boolean result = true;
|
|---|
| 324 | for (IVersionFilter filter : filters) {
|
|---|
| 325 | result &= !filter.apply(version);
|
|---|
| 326 | }
|
|---|
| 327 | return result;
|
|---|
| 328 | }
|
|---|
| 329 | }
|
|---|