1 | package de.ugoe.cs.cpdp.execution;
|
---|
2 |
|
---|
3 | import java.io.File;
|
---|
4 | import java.util.LinkedList;
|
---|
5 | import java.util.List;
|
---|
6 | import java.util.logging.Level;
|
---|
7 |
|
---|
8 | import weka.core.Instances;
|
---|
9 | import de.ugoe.cs.cpdp.ExperimentConfiguration;
|
---|
10 | import de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy;
|
---|
11 | import de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy;
|
---|
12 | import de.ugoe.cs.cpdp.eval.IEvaluationStrategy;
|
---|
13 | import de.ugoe.cs.cpdp.loader.IVersionLoader;
|
---|
14 | import de.ugoe.cs.cpdp.training.ITrainer;
|
---|
15 | import de.ugoe.cs.cpdp.training.ITrainingStrategy;
|
---|
16 | import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer;
|
---|
17 | import de.ugoe.cs.cpdp.versions.SoftwareVersion;
|
---|
18 | import de.ugoe.cs.util.console.Console;
|
---|
19 |
|
---|
20 | /**
|
---|
21 | * Class responsible for executing an experiment according to an {@link ExperimentConfiguration}. The steps
|
---|
22 | * of this ClassifierCreationExperiment are as follows:
|
---|
23 | * <ul>
|
---|
24 | * <li>load the data from the provided data path</li>
|
---|
25 | * <li>check if given resultsdir exists, if not create one</li>
|
---|
26 | * <li>execute the following steps for each data set:
|
---|
27 | * <ul>
|
---|
28 | * <li>load the dataset</li>
|
---|
29 | * <li>set testdata == traindata</li>
|
---|
30 | * <li>preprocess the data</li>
|
---|
31 | * <li>postprocess the data</li>
|
---|
32 | * <li>for each configured trainer do the following:</li>
|
---|
33 | * <ul>
|
---|
34 | * <li>if the classifier should be saved, train it with the dataset</li>
|
---|
35 | * <li>save it in the results dir</li>
|
---|
36 | * <li>For each configured evaluator: Do the evaluation and save results</li>
|
---|
37 | * </ul>
|
---|
38 | * </ul>
|
---|
39 | * </ul>
|
---|
40 | *
|
---|
41 | * Note that this class implements {@link IExectuionStrategy}, i.e., each experiment can be started
|
---|
42 | * in its own thread.
|
---|
43 | *
|
---|
44 | * @author Fabian Trautsch
|
---|
45 | */
|
---|
46 | public class ClassifierCreationExperiment implements IExecutionStrategy {
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * configuration of the experiment
|
---|
50 | */
|
---|
51 | private final ExperimentConfiguration config;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Constructor. Creates a new experiment based on a configuration.
|
---|
55 | * @param config configuration of the experiment
|
---|
56 | */
|
---|
57 | public ClassifierCreationExperiment(ExperimentConfiguration config) {
|
---|
58 | this.config = config;
|
---|
59 | }
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * Executes the experiment with the steps as described in the class comment.
|
---|
63 | * @see Runnable#run()
|
---|
64 | */
|
---|
65 | @Override
|
---|
66 | public void run() {
|
---|
67 | final List<SoftwareVersion> versions = new LinkedList<>();
|
---|
68 |
|
---|
69 | boolean writeHeader = true;
|
---|
70 |
|
---|
71 | for(IVersionLoader loader : config.getLoaders()) {
|
---|
72 | versions.addAll(loader.load());
|
---|
73 | }
|
---|
74 |
|
---|
75 |
|
---|
76 | File resultsDir = new File(config.getResultsPath());
|
---|
77 | if (!resultsDir.exists()) {
|
---|
78 | resultsDir.mkdir();
|
---|
79 | }
|
---|
80 |
|
---|
81 |
|
---|
82 | int versionCount = 1;
|
---|
83 | for( SoftwareVersion testVersion : versions ) {
|
---|
84 |
|
---|
85 | // At first: traindata == testdata
|
---|
86 | Instances testdata = testVersion.getInstances();
|
---|
87 | Instances traindata = new Instances(testdata);
|
---|
88 |
|
---|
89 | // Give the dataset a new name
|
---|
90 | testdata.setRelationName(testVersion.getProject());
|
---|
91 |
|
---|
92 | for( IProcessesingStrategy processor : config.getPreProcessors() ) {
|
---|
93 | Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying preprocessor %s", config.getExperimentName(), versionCount, versions.size(), testVersion.getProject(), processor.getClass().getName()));
|
---|
94 | processor.apply(testdata, traindata);
|
---|
95 | }
|
---|
96 |
|
---|
97 | for( IPointWiseDataselectionStrategy dataselector : config.getPointWiseSelectors() ) {
|
---|
98 | Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying pointwise selection %s", config.getExperimentName(), versionCount, versions.size(), testVersion.getProject(), dataselector.getClass().getName()));
|
---|
99 | traindata = dataselector.apply(testdata, traindata);
|
---|
100 | }
|
---|
101 |
|
---|
102 | for( IProcessesingStrategy processor : config.getPostProcessors() ) {
|
---|
103 | Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying setwise postprocessor %s", config.getExperimentName(), versionCount, versions.size(), testVersion.getProject(), processor.getClass().getName()));
|
---|
104 | processor.apply(testdata, traindata);
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 |
|
---|
109 |
|
---|
110 | // Trainerlist for evaluation later on
|
---|
111 | List<ITrainer> allTrainers = new LinkedList<>();
|
---|
112 |
|
---|
113 | for( ITrainingStrategy trainer : config.getTrainers() ) {
|
---|
114 |
|
---|
115 | // Add trainer to list for evaluation
|
---|
116 | allTrainers.add(trainer);
|
---|
117 |
|
---|
118 | // Train classifier
|
---|
119 | trainer.apply(traindata);
|
---|
120 |
|
---|
121 | if(config.getSaveClassifier()) {
|
---|
122 | // If classifier should be saved, train him and save him
|
---|
123 | // be careful with typecasting here!
|
---|
124 | IWekaCompatibleTrainer trainerToSave = (IWekaCompatibleTrainer) trainer;
|
---|
125 | //Console.println(trainerToSave.getClassifier().toString());
|
---|
126 | try {
|
---|
127 | weka.core.SerializationHelper.write(resultsDir.getAbsolutePath()+"/"+trainer.getName()+"-"+testVersion.getProject(), trainerToSave.getClassifier());
|
---|
128 | } catch (Exception e) {
|
---|
129 | e.printStackTrace();
|
---|
130 | }
|
---|
131 |
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 |
|
---|
137 | for( IEvaluationStrategy evaluator : config.getEvaluators() ) {
|
---|
138 | Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying evaluator %s", config.getExperimentName(), versionCount, versions.size(), testVersion.getProject(), evaluator.getClass().getName()));
|
---|
139 |
|
---|
140 | if( writeHeader ) {
|
---|
141 | evaluator.setParameter(config.getResultsPath() + "/" + config.getExperimentName() + ".csv");
|
---|
142 | }
|
---|
143 | evaluator.apply(testdata, traindata, allTrainers, writeHeader);
|
---|
144 | writeHeader = false;
|
---|
145 | }
|
---|
146 |
|
---|
147 | versionCount++;
|
---|
148 |
|
---|
149 | Console.traceln(Level.INFO, String.format("[%s] [%02d/%02d] %s: finished", config.getExperimentName(), versionCount, versions.size(), testVersion.getProject()));
|
---|
150 |
|
---|
151 | }
|
---|
152 |
|
---|
153 | }
|
---|
154 |
|
---|
155 | }
|
---|