1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.util.ArrayList; |
---|
18 | import java.util.Arrays; |
---|
19 | import java.util.Collections; |
---|
20 | import java.util.Comparator; |
---|
21 | import java.util.HashMap; |
---|
22 | import java.util.Iterator; |
---|
23 | import java.util.LinkedHashMap; |
---|
24 | import java.util.LinkedList; |
---|
25 | import java.util.List; |
---|
26 | import java.util.Map; |
---|
27 | import java.util.Map.Entry; |
---|
28 | import java.util.logging.Level; |
---|
29 | |
---|
30 | import java.util.Random; |
---|
31 | |
---|
32 | import org.apache.commons.collections4.list.SetUniqueList; |
---|
33 | import org.apache.commons.math3.stat.correlation.SpearmansCorrelation; |
---|
34 | import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest; |
---|
35 | |
---|
36 | import de.ugoe.cs.util.console.Console; |
---|
37 | import weka.attributeSelection.SignificanceAttributeEval; |
---|
38 | import weka.classifiers.AbstractClassifier; |
---|
39 | import weka.classifiers.Classifier; |
---|
40 | import weka.core.Attribute; |
---|
41 | import weka.core.DenseInstance; |
---|
42 | import weka.core.Instance; |
---|
43 | import weka.core.Instances; |
---|
44 | |
---|
45 | /** |
---|
46 | * Implements Heterogenous Defect Prediction after Nam et al. 2015. |
---|
47 | * |
---|
48 | * We extend WekaBaseTraining because we have to Wrap the Classifier to use MetricMatching. |
---|
49 | * This also means we can use any Weka Classifier not just LogisticRegression. |
---|
50 | * |
---|
51 | * Config: <setwisetestdataawaretrainer name="MetricMatchingTraining" param="Logistic weka.classifiers.functions.Logistic" threshold="0.05" method="spearman"/> |
---|
52 | * Instead of spearman metchod it also takes ks, percentile. |
---|
53 | * Instead of Logistic every other weka classifier can be chosen. |
---|
54 | * |
---|
55 | * Future work: |
---|
56 | * implement chisquare test in addition to significance for attribute selection |
---|
57 | * http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/stat/inference/ChiSquareTest.html |
---|
58 | * use chiSquareTestDataSetsComparison |
---|
59 | */ |
---|
60 | public class MetricMatchingTraining extends WekaBaseTraining implements ISetWiseTestdataAwareTrainingStrategy { |
---|
61 | |
---|
62 | private MetricMatch mm = null; |
---|
63 | private Classifier classifier = null; |
---|
64 | |
---|
65 | private String method; |
---|
66 | private float threshold; |
---|
67 | |
---|
68 | /** |
---|
69 | * We wrap the classifier here because of classifyInstance with our MetricMatchingClassfier |
---|
70 | * @return |
---|
71 | */ |
---|
72 | @Override |
---|
73 | public Classifier getClassifier() { |
---|
74 | return this.classifier; |
---|
75 | } |
---|
76 | |
---|
77 | /** |
---|
78 | * Set similarity measure method. |
---|
79 | */ |
---|
80 | @Override |
---|
81 | public void setMethod(String method) { |
---|
82 | this.method = method; |
---|
83 | } |
---|
84 | |
---|
85 | /** |
---|
86 | * Set threshold for similarity measure. |
---|
87 | */ |
---|
88 | @Override |
---|
89 | public void setThreshold(String threshold) { |
---|
90 | this.threshold = Float.parseFloat(threshold); |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * We need the test data instances to do a metric matching, so in this special case we get this data |
---|
95 | * before evaluation. |
---|
96 | */ |
---|
97 | @Override |
---|
98 | public void apply(SetUniqueList<Instances> traindataSet, Instances testdata) { |
---|
99 | // reset these for each run |
---|
100 | this.mm = null; |
---|
101 | this.classifier = null; |
---|
102 | |
---|
103 | double score = 0; // matching score to select the best matching training data from the set |
---|
104 | int num = 0; |
---|
105 | int biggest_num = 0; |
---|
106 | MetricMatch tmp; |
---|
107 | for (Instances traindata : traindataSet) { |
---|
108 | num++; |
---|
109 | |
---|
110 | tmp = new MetricMatch(traindata, testdata); |
---|
111 | |
---|
112 | // metric selection may create error, continue to next training set |
---|
113 | try { |
---|
114 | tmp.attributeSelection(); |
---|
115 | tmp.matchAttributes(this.method, this.threshold); |
---|
116 | }catch(Exception e) { |
---|
117 | e.printStackTrace(); |
---|
118 | throw new RuntimeException(e); |
---|
119 | } |
---|
120 | |
---|
121 | // we only select the training data from our set with the most matching attributes |
---|
122 | if (tmp.getScore() > score && tmp.attributes.size() > 0) { |
---|
123 | score = tmp.getScore(); |
---|
124 | this.mm = tmp; |
---|
125 | biggest_num = num; |
---|
126 | } |
---|
127 | } |
---|
128 | |
---|
129 | // if we have found a matching instance we use it, log information about the match for additional eval later |
---|
130 | Instances ilist = null; |
---|
131 | if (this.mm != null) { |
---|
132 | ilist = this.mm.getMatchedTrain(); |
---|
133 | Console.traceln(Level.INFO, "[MATCH FOUND] match: ["+biggest_num +"], score: [" + score + "], instances: [" + ilist.size() + "], attributes: [" + this.mm.attributes.size() + "], ilist attrs: ["+ilist.numAttributes()+"]"); |
---|
134 | for(Map.Entry<Integer, Integer> attmatch : this.mm.attributes.entrySet()) { |
---|
135 | Console.traceln(Level.INFO, "[MATCHED ATTRIBUTE] source attribute: [" + this.mm.train.attribute(attmatch.getKey()).name() + "], target attribute: [" + this.mm.test.attribute(attmatch.getValue()).name() + "]"); |
---|
136 | } |
---|
137 | }else { |
---|
138 | Console.traceln(Level.INFO, "[NO MATCH FOUND]"); |
---|
139 | } |
---|
140 | |
---|
141 | // if we have a match we build the MetricMatchingClassifier, if not we fall back to FixClass Classifier |
---|
142 | try { |
---|
143 | if(this.mm != null) { |
---|
144 | this.classifier = new MetricMatchingClassifier(); |
---|
145 | this.classifier.buildClassifier(ilist); |
---|
146 | ((MetricMatchingClassifier) this.classifier).setMetricMatching(this.mm); |
---|
147 | }else { |
---|
148 | this.classifier = new FixClass(); |
---|
149 | this.classifier.buildClassifier(ilist); // this is null, but the FixClass Classifier does not use it anyway |
---|
150 | } |
---|
151 | }catch(Exception e) { |
---|
152 | e.printStackTrace(); |
---|
153 | throw new RuntimeException(e); |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | |
---|
158 | /** |
---|
159 | * Encapsulates the classifier configured with WekaBase within but use metric matching. |
---|
160 | * This allows us to use any Weka classifier with Heterogenous Defect Prediction. |
---|
161 | */ |
---|
162 | public class MetricMatchingClassifier extends AbstractClassifier { |
---|
163 | |
---|
164 | private static final long serialVersionUID = -1342172153473770935L; |
---|
165 | private MetricMatch mm; |
---|
166 | private Classifier classifier; |
---|
167 | |
---|
168 | @Override |
---|
169 | public void buildClassifier(Instances traindata) throws Exception { |
---|
170 | this.classifier = setupClassifier(); |
---|
171 | this.classifier.buildClassifier(traindata); |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Sets the MetricMatch instance so that we can use matched test data later. |
---|
176 | * @param mm |
---|
177 | */ |
---|
178 | public void setMetricMatching(MetricMatch mm) { |
---|
179 | this.mm = mm; |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * Here we can not do the metric matching because we only get one instance. |
---|
184 | * Therefore we need a MetricMatch instance beforehand to use here. |
---|
185 | */ |
---|
186 | public double classifyInstance(Instance testdata) { |
---|
187 | // get a copy of testdata Instance with only the matched attributes |
---|
188 | Instance ntest = this.mm.getMatchedTestInstance(testdata); |
---|
189 | |
---|
190 | double ret = 0.0; |
---|
191 | try { |
---|
192 | ret = this.classifier.classifyInstance(ntest); |
---|
193 | }catch(Exception e) { |
---|
194 | e.printStackTrace(); |
---|
195 | throw new RuntimeException(e); |
---|
196 | } |
---|
197 | |
---|
198 | return ret; |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Encapsulates one MetricMatching process. |
---|
204 | * One source (train) matches against one target (test). |
---|
205 | */ |
---|
206 | public class MetricMatch { |
---|
207 | Instances train; |
---|
208 | Instances test; |
---|
209 | |
---|
210 | // used to sum up the matching values of all attributes |
---|
211 | protected double p_sum = 0; |
---|
212 | |
---|
213 | // attribute matching, train -> test |
---|
214 | HashMap<Integer, Integer> attributes = new HashMap<Integer,Integer>(); |
---|
215 | |
---|
216 | // used for similarity tests |
---|
217 | protected ArrayList<double[]> train_values; |
---|
218 | protected ArrayList<double[]> test_values; |
---|
219 | |
---|
220 | |
---|
221 | public MetricMatch(Instances train, Instances test) { |
---|
222 | // this is expensive but we need to keep the original data intact |
---|
223 | this.train = this.deepCopy(train); |
---|
224 | this.test = test; // we do not need a copy here because we do not drop attributes before the matching and after the matching we create a new Instances with only the matched attributes |
---|
225 | |
---|
226 | // convert metrics of testdata and traindata to later use in similarity tests |
---|
227 | this.train_values = new ArrayList<double[]>(); |
---|
228 | for (int i = 0; i < this.train.numAttributes(); i++) { |
---|
229 | if(this.train.classIndex() != i) { |
---|
230 | this.train_values.add(this.train.attributeToDoubleArray(i)); |
---|
231 | } |
---|
232 | } |
---|
233 | |
---|
234 | this.test_values = new ArrayList<double[]>(); |
---|
235 | for (int i=0; i < this.test.numAttributes(); i++) { |
---|
236 | if(this.test.classIndex() != i) { |
---|
237 | this.test_values.add(this.test.attributeToDoubleArray(i)); |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | /** |
---|
243 | * We have a lot of matching possibilities. |
---|
244 | * Here we try to determine the best one. |
---|
245 | * |
---|
246 | * @return double matching score |
---|
247 | */ |
---|
248 | public double getScore() { |
---|
249 | int as = this.attributes.size(); // # of attributes that were matched |
---|
250 | |
---|
251 | // we use thresholding ranking approach for numInstances to influence the matching score |
---|
252 | int instances = this.train.numInstances(); |
---|
253 | int inst_rank = 0; |
---|
254 | if(instances > 100) { |
---|
255 | inst_rank = 1; |
---|
256 | } |
---|
257 | if(instances > 500) { |
---|
258 | inst_rank = 2; |
---|
259 | } |
---|
260 | |
---|
261 | return this.p_sum + as + inst_rank; |
---|
262 | } |
---|
263 | |
---|
264 | public HashMap<Integer, Integer> getAttributes() { |
---|
265 | return this.attributes; |
---|
266 | } |
---|
267 | |
---|
268 | public int getNumInstances() { |
---|
269 | return this.train_values.get(0).length; |
---|
270 | } |
---|
271 | |
---|
272 | |
---|
273 | /** |
---|
274 | * The test instance must be of the same dataset as the train data, otherwise WekaEvaluation will die. |
---|
275 | * This means we have to force the dataset of this.train (after matching) and only |
---|
276 | * set the values for the attributes we matched but with the index of the traindata attributes we matched. |
---|
277 | * |
---|
278 | * @param test |
---|
279 | * @return |
---|
280 | */ |
---|
281 | public Instance getMatchedTestInstance(Instance test) { |
---|
282 | Instance ni = new DenseInstance(this.attributes.size()+1); |
---|
283 | |
---|
284 | Instances inst = this.getMatchedTrain(); |
---|
285 | |
---|
286 | ni.setDataset(inst); |
---|
287 | |
---|
288 | // assign only the matched attributes to new indexes |
---|
289 | double val; |
---|
290 | int k = 0; |
---|
291 | for(Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
292 | // get value from matched attribute |
---|
293 | val = test.value(attmatch.getValue()); |
---|
294 | |
---|
295 | // set it to new index, the order of the attributes is the same |
---|
296 | ni.setValue(k, val); |
---|
297 | k++; |
---|
298 | } |
---|
299 | ni.setClassValue(test.value(test.classAttribute())); |
---|
300 | |
---|
301 | return ni; |
---|
302 | } |
---|
303 | |
---|
304 | |
---|
305 | /** |
---|
306 | * returns a new instances array with the metric matched training data |
---|
307 | * |
---|
308 | * @return instances |
---|
309 | */ |
---|
310 | public Instances getMatchedTrain() { |
---|
311 | return this.getMatchedInstances("train", this.train); |
---|
312 | } |
---|
313 | |
---|
314 | /** |
---|
315 | * returns a new instances array with the metric matched test data |
---|
316 | * |
---|
317 | * @return instances |
---|
318 | */ |
---|
319 | public Instances getMatchedTest() { |
---|
320 | return this.getMatchedInstances("test", this.test); |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * We could drop unmatched attributes from our instances datasets. |
---|
325 | * Alas, that would not be nice for the following postprocessing jobs and would not work at all for evaluation. |
---|
326 | * We keep this as a warning for future generations. |
---|
327 | * |
---|
328 | * @param name |
---|
329 | * @param data |
---|
330 | */ |
---|
331 | @SuppressWarnings("unused") |
---|
332 | private void dropUnmatched(String name, Instances data) { |
---|
333 | for(int i = 0; i < data.numAttributes(); i++) { |
---|
334 | if(data.classIndex() == i) { |
---|
335 | continue; |
---|
336 | } |
---|
337 | |
---|
338 | if(name.equals("train") && !this.attributes.containsKey(i)) { |
---|
339 | data.deleteAttributeAt(i); |
---|
340 | } |
---|
341 | |
---|
342 | if(name.equals("test") && !this.attributes.containsValue(i)) { |
---|
343 | data.deleteAttributeAt(i); |
---|
344 | } |
---|
345 | } |
---|
346 | } |
---|
347 | |
---|
348 | /** |
---|
349 | * Deep Copy (well, reasonably deep, not sure about header information of attributes) Weka Instances. |
---|
350 | * |
---|
351 | * @param data Instances |
---|
352 | * @return copy of Instances passed |
---|
353 | */ |
---|
354 | private Instances deepCopy(Instances data) { |
---|
355 | Instances newInst = new Instances(data); |
---|
356 | |
---|
357 | newInst.clear(); |
---|
358 | |
---|
359 | for (int i=0; i < data.size(); i++) { |
---|
360 | Instance ni = new DenseInstance(data.numAttributes()); |
---|
361 | for(int j = 0; j < data.numAttributes(); j++) { |
---|
362 | ni.setValue(newInst.attribute(j), data.instance(i).value(data.attribute(j))); |
---|
363 | } |
---|
364 | newInst.add(ni); |
---|
365 | } |
---|
366 | |
---|
367 | return newInst; |
---|
368 | } |
---|
369 | |
---|
370 | /** |
---|
371 | * Returns a deep copy of passed Instances data for Train or Test data. |
---|
372 | * It only keeps attributes that have been matched. |
---|
373 | * |
---|
374 | * @param name |
---|
375 | * @param data |
---|
376 | * @return matched Instances |
---|
377 | */ |
---|
378 | private Instances getMatchedInstances(String name, Instances data) { |
---|
379 | ArrayList<Attribute> attrs = new ArrayList<Attribute>(); |
---|
380 | |
---|
381 | // bug attr is a string, really! |
---|
382 | ArrayList<String> bug = new ArrayList<String>(); |
---|
383 | bug.add("0"); |
---|
384 | bug.add("1"); |
---|
385 | |
---|
386 | // add our matched attributes and last the bug |
---|
387 | for(Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
388 | attrs.add(new Attribute(String.valueOf(attmatch.getValue()))); |
---|
389 | } |
---|
390 | attrs.add(new Attribute("bug", bug)); |
---|
391 | |
---|
392 | // create new instances object of the same size (at least for instances) |
---|
393 | Instances newInst = new Instances(name, attrs, data.size()); |
---|
394 | |
---|
395 | // set last as class |
---|
396 | newInst.setClassIndex(newInst.numAttributes()-1); |
---|
397 | |
---|
398 | // copy data for matched attributes, this depends if we return train or test data |
---|
399 | for (int i=0; i < data.size(); i++) { |
---|
400 | Instance ni = new DenseInstance(this.attributes.size()+1); |
---|
401 | |
---|
402 | int j = 0; // new indices! |
---|
403 | for(Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
404 | |
---|
405 | // test attribute match |
---|
406 | int value = attmatch.getValue(); |
---|
407 | |
---|
408 | // train attribute match |
---|
409 | if(name.equals("train")) { |
---|
410 | value = attmatch.getKey(); |
---|
411 | } |
---|
412 | |
---|
413 | ni.setValue(newInst.attribute(j), data.instance(i).value(value)); |
---|
414 | j++; |
---|
415 | } |
---|
416 | ni.setValue(ni.numAttributes()-1, data.instance(i).value(data.classAttribute())); |
---|
417 | newInst.add(ni); |
---|
418 | } |
---|
419 | |
---|
420 | return newInst; |
---|
421 | } |
---|
422 | |
---|
423 | /** |
---|
424 | * performs the attribute selection |
---|
425 | * we perform attribute significance tests and drop attributes |
---|
426 | * |
---|
427 | * attribute selection is only performed on the source dataset |
---|
428 | * we retain the top 15% attributes (if 15% is a float we just use the integer part) |
---|
429 | */ |
---|
430 | public void attributeSelection() throws Exception { |
---|
431 | |
---|
432 | // it is a wrapper, we may decide to implement ChiSquare or other means of selecting attributes |
---|
433 | this.attributeSelectionBySignificance(this.train); |
---|
434 | } |
---|
435 | |
---|
436 | private void attributeSelectionBySignificance(Instances which) throws Exception { |
---|
437 | // Uses: http://weka.sourceforge.net/doc.packages/probabilisticSignificanceAE/weka/attributeSelection/SignificanceAttributeEval.html |
---|
438 | SignificanceAttributeEval et = new SignificanceAttributeEval(); |
---|
439 | et.buildEvaluator(which); |
---|
440 | |
---|
441 | // evaluate all training attributes |
---|
442 | HashMap<String,Double> saeval = new HashMap<String,Double>(); |
---|
443 | for(int i=0; i < which.numAttributes(); i++) { |
---|
444 | if(which.classIndex() != i) { |
---|
445 | saeval.put(which.attribute(i).name(), et.evaluateAttribute(i)); |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | // sort by significance |
---|
450 | HashMap<String, Double> sorted = (HashMap<String, Double>) sortByValues(saeval); |
---|
451 | |
---|
452 | // Keep the best 15% |
---|
453 | double last = ((double)saeval.size() / 100.0) * 15.0; |
---|
454 | int drop_first = saeval.size() - (int)last; |
---|
455 | |
---|
456 | // drop attributes above last |
---|
457 | Iterator<Entry<String, Double>> it = sorted.entrySet().iterator(); |
---|
458 | while (drop_first > 0) { |
---|
459 | Map.Entry<String, Double> pair = (Map.Entry<String, Double>)it.next(); |
---|
460 | if(which.attribute((String)pair.getKey()).index() != which.classIndex()) { |
---|
461 | which.deleteAttributeAt(which.attribute((String)pair.getKey()).index()); |
---|
462 | } |
---|
463 | drop_first-=1; |
---|
464 | } |
---|
465 | } |
---|
466 | |
---|
467 | /** |
---|
468 | * Helper method to sort a hashmap by its values. |
---|
469 | * |
---|
470 | * @param map |
---|
471 | * @return sorted map |
---|
472 | */ |
---|
473 | private HashMap<String, Double> sortByValues(HashMap<String, Double> map) { |
---|
474 | List<Map.Entry<String, Double>> list = new LinkedList<Map.Entry<String, Double>>(map.entrySet()); |
---|
475 | |
---|
476 | Collections.sort(list, new Comparator<Map.Entry<String, Double>>() { |
---|
477 | public int compare(Map.Entry<String, Double> o1, Map.Entry<String, Double> o2) { |
---|
478 | return (o1.getValue()).compareTo( o2.getValue() ); |
---|
479 | } |
---|
480 | }); |
---|
481 | |
---|
482 | HashMap<String, Double> sortedHashMap = new LinkedHashMap<String, Double>(); |
---|
483 | for(Map.Entry<String, Double> item : list) { |
---|
484 | sortedHashMap.put(item.getKey(), item.getValue()); |
---|
485 | } |
---|
486 | return sortedHashMap; |
---|
487 | } |
---|
488 | |
---|
489 | |
---|
490 | /** |
---|
491 | * Executes the similarity matching between train and test data. |
---|
492 | * |
---|
493 | * After this function is finished we have this.attributes with the correct matching between train and test data attributes. |
---|
494 | * |
---|
495 | * @param type |
---|
496 | * @param cutoff |
---|
497 | */ |
---|
498 | public void matchAttributes(String type, double cutoff) { |
---|
499 | |
---|
500 | MWBMatchingAlgorithm mwbm = new MWBMatchingAlgorithm(this.train.numAttributes(), this.test.numAttributes()); |
---|
501 | |
---|
502 | if (type.equals("spearman")) { |
---|
503 | this.spearmansRankCorrelation(cutoff, mwbm); |
---|
504 | }else if(type.equals("ks")) { |
---|
505 | this.kolmogorovSmirnovTest(cutoff, mwbm); |
---|
506 | }else if(type.equals("percentile")) { |
---|
507 | this.percentiles(cutoff, mwbm); |
---|
508 | }else { |
---|
509 | throw new RuntimeException("unknown matching method"); |
---|
510 | } |
---|
511 | |
---|
512 | // resulting maximal match gets assigned to this.attributes |
---|
513 | int[] result = mwbm.getMatching(); |
---|
514 | for( int i = 0; i < result.length; i++) { |
---|
515 | |
---|
516 | // -1 means that it is not in the set of maximal matching |
---|
517 | if( i != -1 && result[i] != -1) { |
---|
518 | this.p_sum += mwbm.weights[i][result[i]]; // we add the weight of the returned matching for scoring the complete match later |
---|
519 | this.attributes.put(i, result[i]); |
---|
520 | } |
---|
521 | } |
---|
522 | } |
---|
523 | |
---|
524 | |
---|
525 | /** |
---|
526 | * Calculates the Percentiles of the source and target metrics. |
---|
527 | * |
---|
528 | * @param cutoff |
---|
529 | */ |
---|
530 | public void percentiles(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
531 | for( int i = 0; i < this.train.numAttributes(); i++ ) { |
---|
532 | for( int j = 0; j < this.test.numAttributes(); j++ ) { |
---|
533 | // negative infinity counts as not present, we do this so we don't have to map between attribute indexes in weka |
---|
534 | // and the result of the mwbm computation |
---|
535 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
536 | |
---|
537 | // class attributes are not relevant |
---|
538 | if (this.test.classIndex() == j) { |
---|
539 | continue; |
---|
540 | } |
---|
541 | if (this.train.classIndex() == i) { |
---|
542 | continue; |
---|
543 | } |
---|
544 | |
---|
545 | // get percentiles |
---|
546 | double train[] = this.train_values.get(i); |
---|
547 | double test[] = this.test_values.get(j); |
---|
548 | |
---|
549 | Arrays.sort(train); |
---|
550 | Arrays.sort(test); |
---|
551 | |
---|
552 | // percentiles |
---|
553 | double train_p; |
---|
554 | double test_p; |
---|
555 | double score = 0.0; |
---|
556 | for( int p=1; p <= 9; p++ ) { |
---|
557 | train_p = train[(int)Math.ceil(train.length * (p/100))]; |
---|
558 | test_p = test[(int)Math.ceil(test.length * (p/100))]; |
---|
559 | |
---|
560 | if( train_p > test_p ) { |
---|
561 | score += test_p / train_p; |
---|
562 | }else { |
---|
563 | score += train_p / test_p; |
---|
564 | } |
---|
565 | } |
---|
566 | |
---|
567 | if( score > cutoff ) { |
---|
568 | mwbm.setWeight(i, j, score); |
---|
569 | } |
---|
570 | } |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | /** |
---|
575 | * Calculate Spearmans rank correlation coefficient as matching score. |
---|
576 | * The number of instances for the source and target needs to be the same so we randomly sample from the bigger one. |
---|
577 | * |
---|
578 | * @param cutoff |
---|
579 | * @param mwbmatching |
---|
580 | */ |
---|
581 | public void spearmansRankCorrelation(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
582 | double p = 0; |
---|
583 | |
---|
584 | SpearmansCorrelation t = new SpearmansCorrelation(); |
---|
585 | |
---|
586 | // size has to be the same so we randomly sample the number of the smaller sample from the big sample |
---|
587 | if (this.train.size() > this.test.size()) { |
---|
588 | this.sample(this.train, this.test, this.train_values); |
---|
589 | }else if (this.test.size() > this.train.size()) { |
---|
590 | this.sample(this.test, this.train, this.test_values); |
---|
591 | } |
---|
592 | |
---|
593 | // try out possible attribute combinations |
---|
594 | for (int i=0; i < this.train.numAttributes(); i++) { |
---|
595 | for (int j=0; j < this.test.numAttributes(); j++) { |
---|
596 | // negative infinity counts as not present, we do this so we don't have to map between attribute indexs in weka |
---|
597 | // and the result of the mwbm computation |
---|
598 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
599 | |
---|
600 | // class attributes are not relevant |
---|
601 | if (this.test.classIndex() == j) { |
---|
602 | continue; |
---|
603 | } |
---|
604 | if (this.train.classIndex() == i) { |
---|
605 | continue; |
---|
606 | } |
---|
607 | |
---|
608 | p = t.correlation(this.train_values.get(i), this.test_values.get(j)); |
---|
609 | if (p > cutoff) { |
---|
610 | mwbm.setWeight(i, j, p); |
---|
611 | } |
---|
612 | } |
---|
613 | } |
---|
614 | } |
---|
615 | |
---|
616 | /** |
---|
617 | * Helper method to sample instances for the Spearman rank correlation coefficient method. |
---|
618 | * |
---|
619 | * @param bigger |
---|
620 | * @param smaller |
---|
621 | * @param values |
---|
622 | */ |
---|
623 | private void sample(Instances bigger, Instances smaller, ArrayList<double[]> values) { |
---|
624 | // we want to at keep the indices we select the same |
---|
625 | int indices_to_draw = smaller.size(); |
---|
626 | ArrayList<Integer> indices = new ArrayList<Integer>(); |
---|
627 | Random rand = new Random(); |
---|
628 | while (indices_to_draw > 0) { |
---|
629 | |
---|
630 | int index = rand.nextInt(bigger.size()-1); |
---|
631 | |
---|
632 | if (!indices.contains(index)) { |
---|
633 | indices.add(index); |
---|
634 | indices_to_draw--; |
---|
635 | } |
---|
636 | } |
---|
637 | |
---|
638 | // now reduce our values to the indices we choose above for every attribute |
---|
639 | for (int att=0; att < bigger.numAttributes()-1; att++) { |
---|
640 | |
---|
641 | // get double for the att |
---|
642 | double[] vals = values.get(att); |
---|
643 | double[] new_vals = new double[indices.size()]; |
---|
644 | |
---|
645 | int i = 0; |
---|
646 | for (Iterator<Integer> it = indices.iterator(); it.hasNext();) { |
---|
647 | new_vals[i] = vals[it.next()]; |
---|
648 | i++; |
---|
649 | } |
---|
650 | |
---|
651 | values.set(att, new_vals); |
---|
652 | } |
---|
653 | } |
---|
654 | |
---|
655 | |
---|
656 | /** |
---|
657 | * We run the kolmogorov-smirnov test on the data from our test an traindata |
---|
658 | * if the p value is above the cutoff we include it in the results |
---|
659 | * p value tends to be 0 when the distributions of the data are significantly different |
---|
660 | * but we want them to be the same |
---|
661 | * |
---|
662 | * @param cutoff |
---|
663 | * @return p-val |
---|
664 | */ |
---|
665 | public void kolmogorovSmirnovTest(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
666 | double p = 0; |
---|
667 | |
---|
668 | KolmogorovSmirnovTest t = new KolmogorovSmirnovTest(); |
---|
669 | for (int i=0; i < this.train.numAttributes(); i++) { |
---|
670 | for ( int j=0; j < this.test.numAttributes(); j++) { |
---|
671 | // negative infinity counts as not present, we do this so we don't have to map between attribute indexs in weka |
---|
672 | // and the result of the mwbm computation |
---|
673 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
674 | |
---|
675 | // class attributes are not relevant |
---|
676 | if (this.test.classIndex() == j) { |
---|
677 | continue; |
---|
678 | } |
---|
679 | if (this.train.classIndex() == i) { |
---|
680 | continue; |
---|
681 | } |
---|
682 | |
---|
683 | // this may invoke exactP on small sample sizes which will not terminate in all cases |
---|
684 | //p = t.kolmogorovSmirnovTest(this.train_values.get(i), this.test_values.get(j), false); |
---|
685 | |
---|
686 | // this uses approximateP everytime |
---|
687 | p = t.approximateP(t.kolmogorovSmirnovStatistic(this.train_values.get(i), this.test_values.get(j)), this.train_values.get(i).length, this.test_values.get(j).length); |
---|
688 | if (p > cutoff) { |
---|
689 | mwbm.setWeight(i, j, p); |
---|
690 | } |
---|
691 | } |
---|
692 | } |
---|
693 | } |
---|
694 | } |
---|
695 | |
---|
696 | /* |
---|
697 | * Copyright (c) 2007, Massachusetts Institute of Technology |
---|
698 | * Copyright (c) 2005-2006, Regents of the University of California |
---|
699 | * All rights reserved. |
---|
700 | * |
---|
701 | * Redistribution and use in source and binary forms, with or without |
---|
702 | * modification, are permitted provided that the following conditions |
---|
703 | * are met: |
---|
704 | * |
---|
705 | * * Redistributions of source code must retain the above copyright |
---|
706 | * notice, this list of conditions and the following disclaimer. |
---|
707 | * |
---|
708 | * * Redistributions in binary form must reproduce the above copyright |
---|
709 | * notice, this list of conditions and the following disclaimer in |
---|
710 | * the documentation and/or other materials provided with the |
---|
711 | * distribution. |
---|
712 | * |
---|
713 | * * Neither the name of the University of California, Berkeley nor |
---|
714 | * the names of its contributors may be used to endorse or promote |
---|
715 | * products derived from this software without specific prior |
---|
716 | * written permission. |
---|
717 | * |
---|
718 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
719 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
720 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
721 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
722 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
723 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
---|
724 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
---|
725 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
726 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
---|
727 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
---|
728 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
---|
729 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
730 | */ |
---|
731 | |
---|
732 | |
---|
733 | |
---|
734 | /** |
---|
735 | * An engine for finding the maximum-weight matching in a complete |
---|
736 | * bipartite graph. Suppose we have two sets <i>S</i> and <i>T</i>, |
---|
737 | * both of size <i>n</i>. For each <i>i</i> in <i>S</i> and <i>j</i> |
---|
738 | * in <i>T</i>, we have a weight <i>w<sub>ij</sub></i>. A perfect |
---|
739 | * matching <i>X</i> is a subset of <i>S</i> x <i>T</i> such that each |
---|
740 | * <i>i</i> in <i>S</i> occurs in exactly one element of <i>X</i>, and |
---|
741 | * each <i>j</i> in <i>T</i> occurs in exactly one element of |
---|
742 | * <i>X</i>. Thus, <i>X</i> can be thought of as a one-to-one |
---|
743 | * function from <i>S</i> to <i>T</i>. The weight of <i>X</i> is the |
---|
744 | * sum, over (<i>i</i>, <i>j</i>) in <i>X</i>, of |
---|
745 | * <i>w<sub>ij</sub></i>. A BipartiteMatcher takes the number |
---|
746 | * <i>n</i> and the weights <i>w<sub>ij</sub></i>, and finds a perfect |
---|
747 | * matching of maximum weight. |
---|
748 | * |
---|
749 | * It uses the Hungarian algorithm of Kuhn (1955), as improved and |
---|
750 | * presented by E. L. Lawler in his book <cite>Combinatorial |
---|
751 | * Optimization: Networks and Matroids</cite> (Holt, Rinehart and |
---|
752 | * Winston, 1976, p. 205-206). The running time is |
---|
753 | * O(<i>n</i><sup>3</sup>). The weights can be any finite real |
---|
754 | * numbers; Lawler's algorithm assumes positive weights, so if |
---|
755 | * necessary we add a constant <i>c</i> to all the weights before |
---|
756 | * running the algorithm. This increases the weight of every perfect |
---|
757 | * matching by <i>nc</i>, which doesn't change which perfect matchings |
---|
758 | * have maximum weight. |
---|
759 | * |
---|
760 | * If a weight is set to Double.NEGATIVE_INFINITY, then the algorithm will |
---|
761 | * behave as if that edge were not in the graph. If all the edges incident on |
---|
762 | * a given node have weight Double.NEGATIVE_INFINITY, then the final result |
---|
763 | * will not be a perfect matching, and an exception will be thrown. |
---|
764 | */ |
---|
765 | class MWBMatchingAlgorithm { |
---|
766 | /** |
---|
767 | * Creates a BipartiteMatcher without specifying the graph size. Calling |
---|
768 | * any other method before calling reset will yield an |
---|
769 | * IllegalStateException. |
---|
770 | */ |
---|
771 | |
---|
772 | /** |
---|
773 | * Tolerance for comparisons to zero, to account for |
---|
774 | * floating-point imprecision. We consider a positive number to |
---|
775 | * be essentially zero if it is strictly less than TOL. |
---|
776 | */ |
---|
777 | private static final double TOL = 1e-10; |
---|
778 | //Number of left side nodes |
---|
779 | int n; |
---|
780 | |
---|
781 | //Number of right side nodes |
---|
782 | int m; |
---|
783 | |
---|
784 | double[][] weights; |
---|
785 | double minWeight; |
---|
786 | double maxWeight; |
---|
787 | |
---|
788 | // If (i, j) is in the mapping, then sMatches[i] = j and tMatches[j] = i. |
---|
789 | // If i is unmatched, then sMatches[i] = -1 (and likewise for tMatches). |
---|
790 | int[] sMatches; |
---|
791 | int[] tMatches; |
---|
792 | |
---|
793 | static final int NO_LABEL = -1; |
---|
794 | static final int EMPTY_LABEL = -2; |
---|
795 | |
---|
796 | int[] sLabels; |
---|
797 | int[] tLabels; |
---|
798 | |
---|
799 | double[] u; |
---|
800 | double[] v; |
---|
801 | |
---|
802 | double[] pi; |
---|
803 | |
---|
804 | List<Integer> eligibleS = new ArrayList<Integer>(); |
---|
805 | List<Integer> eligibleT = new ArrayList<Integer>(); |
---|
806 | |
---|
807 | |
---|
808 | public MWBMatchingAlgorithm() { |
---|
809 | n = -1; |
---|
810 | m = -1; |
---|
811 | } |
---|
812 | |
---|
813 | /** |
---|
814 | * Creates a BipartiteMatcher and prepares it to run on an n x m graph. |
---|
815 | * All the weights are initially set to 1. |
---|
816 | */ |
---|
817 | public MWBMatchingAlgorithm(int n, int m) { |
---|
818 | reset(n, m); |
---|
819 | } |
---|
820 | |
---|
821 | /** |
---|
822 | * Resets the BipartiteMatcher to run on an n x m graph. The weights are |
---|
823 | * all reset to 1. |
---|
824 | */ |
---|
825 | private void reset(int n, int m) { |
---|
826 | if (n < 0 || m < 0) { |
---|
827 | throw new IllegalArgumentException("Negative num nodes: " + n + " or " + m); |
---|
828 | } |
---|
829 | this.n = n; |
---|
830 | this.m = m; |
---|
831 | |
---|
832 | weights = new double[n][m]; |
---|
833 | for (int i = 0; i < n; i++) { |
---|
834 | for (int j = 0; j < m; j++) { |
---|
835 | weights[i][j] = 1; |
---|
836 | } |
---|
837 | } |
---|
838 | minWeight = 1; |
---|
839 | maxWeight = Double.NEGATIVE_INFINITY; |
---|
840 | |
---|
841 | sMatches = new int[n]; |
---|
842 | tMatches = new int[m]; |
---|
843 | sLabels = new int[n]; |
---|
844 | tLabels = new int[m]; |
---|
845 | u = new double[n]; |
---|
846 | v = new double[m]; |
---|
847 | pi = new double[m]; |
---|
848 | |
---|
849 | } |
---|
850 | /** |
---|
851 | * Sets the weight w<sub>ij</sub> to the given value w. |
---|
852 | * |
---|
853 | * @throws IllegalArgumentException if i or j is outside the range [0, n). |
---|
854 | */ |
---|
855 | public void setWeight(int i, int j, double w) { |
---|
856 | if (n == -1 || m == -1) { |
---|
857 | throw new IllegalStateException("Graph size not specified."); |
---|
858 | } |
---|
859 | if ((i < 0) || (i >= n)) { |
---|
860 | throw new IllegalArgumentException("i-value out of range: " + i); |
---|
861 | } |
---|
862 | if ((j < 0) || (j >= m)) { |
---|
863 | throw new IllegalArgumentException("j-value out of range: " + j); |
---|
864 | } |
---|
865 | if (Double.isNaN(w)) { |
---|
866 | throw new IllegalArgumentException("Illegal weight: " + w); |
---|
867 | } |
---|
868 | |
---|
869 | weights[i][j] = w; |
---|
870 | if ((w > Double.NEGATIVE_INFINITY) && (w < minWeight)) { |
---|
871 | minWeight = w; |
---|
872 | } |
---|
873 | if (w > maxWeight) { |
---|
874 | maxWeight = w; |
---|
875 | } |
---|
876 | } |
---|
877 | |
---|
878 | /** |
---|
879 | * Returns a maximum-weight perfect matching relative to the weights |
---|
880 | * specified with setWeight. The matching is represented as an array arr |
---|
881 | * of length n, where arr[i] = j if (i,j) is in the matching. |
---|
882 | */ |
---|
883 | public int[] getMatching() { |
---|
884 | if (n == -1 || m == -1 ) { |
---|
885 | throw new IllegalStateException("Graph size not specified."); |
---|
886 | } |
---|
887 | if (n == 0) { |
---|
888 | return new int[0]; |
---|
889 | } |
---|
890 | ensurePositiveWeights(); |
---|
891 | |
---|
892 | // Step 0: Initialization |
---|
893 | eligibleS.clear(); |
---|
894 | eligibleT.clear(); |
---|
895 | for (Integer i = 0; i < n; i++) { |
---|
896 | sMatches[i] = -1; |
---|
897 | |
---|
898 | u[i] = maxWeight; // ambiguous on p. 205 of Lawler, but see p. 202 |
---|
899 | |
---|
900 | // this is really first run of Step 1.0 |
---|
901 | sLabels[i] = EMPTY_LABEL; |
---|
902 | eligibleS.add(i); |
---|
903 | } |
---|
904 | |
---|
905 | for (int j = 0; j < m; j++) { |
---|
906 | tMatches[j] = -1; |
---|
907 | |
---|
908 | v[j] = 0; |
---|
909 | pi[j] = Double.POSITIVE_INFINITY; |
---|
910 | |
---|
911 | // this is really first run of Step 1.0 |
---|
912 | tLabels[j] = NO_LABEL; |
---|
913 | } |
---|
914 | |
---|
915 | while (true) { |
---|
916 | // Augment the matching until we can't augment any more given the |
---|
917 | // current settings of the dual variables. |
---|
918 | while (true) { |
---|
919 | // Steps 1.1-1.4: Find an augmenting path |
---|
920 | int lastNode = findAugmentingPath(); |
---|
921 | if (lastNode == -1) { |
---|
922 | break; // no augmenting path |
---|
923 | } |
---|
924 | |
---|
925 | // Step 2: Augmentation |
---|
926 | flipPath(lastNode); |
---|
927 | for (int i = 0; i < n; i++) |
---|
928 | sLabels[i] = NO_LABEL; |
---|
929 | |
---|
930 | for (int j = 0; j < m; j++) { |
---|
931 | pi[j] = Double.POSITIVE_INFINITY; |
---|
932 | tLabels[j] = NO_LABEL; |
---|
933 | } |
---|
934 | |
---|
935 | |
---|
936 | |
---|
937 | // This is Step 1.0 |
---|
938 | eligibleS.clear(); |
---|
939 | for (int i = 0; i < n; i++) { |
---|
940 | if (sMatches[i] == -1) { |
---|
941 | sLabels[i] = EMPTY_LABEL; |
---|
942 | eligibleS.add(new Integer(i)); |
---|
943 | } |
---|
944 | } |
---|
945 | |
---|
946 | |
---|
947 | eligibleT.clear(); |
---|
948 | } |
---|
949 | |
---|
950 | // Step 3: Change the dual variables |
---|
951 | |
---|
952 | // delta1 = min_i u[i] |
---|
953 | double delta1 = Double.POSITIVE_INFINITY; |
---|
954 | for (int i = 0; i < n; i++) { |
---|
955 | if (u[i] < delta1) { |
---|
956 | delta1 = u[i]; |
---|
957 | } |
---|
958 | } |
---|
959 | |
---|
960 | // delta2 = min_{j : pi[j] > 0} pi[j] |
---|
961 | double delta2 = Double.POSITIVE_INFINITY; |
---|
962 | for (int j = 0; j < m; j++) { |
---|
963 | if ((pi[j] >= TOL) && (pi[j] < delta2)) { |
---|
964 | delta2 = pi[j]; |
---|
965 | } |
---|
966 | } |
---|
967 | |
---|
968 | if (delta1 < delta2) { |
---|
969 | // In order to make another pi[j] equal 0, we'd need to |
---|
970 | // make some u[i] negative. |
---|
971 | break; // we have a maximum-weight matching |
---|
972 | } |
---|
973 | |
---|
974 | changeDualVars(delta2); |
---|
975 | } |
---|
976 | |
---|
977 | int[] matching = new int[n]; |
---|
978 | for (int i = 0; i < n; i++) { |
---|
979 | matching[i] = sMatches[i]; |
---|
980 | } |
---|
981 | return matching; |
---|
982 | } |
---|
983 | |
---|
984 | /** |
---|
985 | * Tries to find an augmenting path containing only edges (i,j) for which |
---|
986 | * u[i] + v[j] = weights[i][j]. If it succeeds, returns the index of the |
---|
987 | * last node in the path. Otherwise, returns -1. In any case, updates |
---|
988 | * the labels and pi values. |
---|
989 | */ |
---|
990 | int findAugmentingPath() { |
---|
991 | while ((!eligibleS.isEmpty()) || (!eligibleT.isEmpty())) { |
---|
992 | if (!eligibleS.isEmpty()) { |
---|
993 | int i = ((Integer) eligibleS.get(eligibleS.size() - 1)). |
---|
994 | intValue(); |
---|
995 | eligibleS.remove(eligibleS.size() - 1); |
---|
996 | for (int j = 0; j < m; j++) { |
---|
997 | // If pi[j] has already been decreased essentially |
---|
998 | // to zero, then j is already labeled, and we |
---|
999 | // can't decrease pi[j] any more. Omitting the |
---|
1000 | // pi[j] >= TOL check could lead us to relabel j |
---|
1001 | // unnecessarily, since the diff we compute on the |
---|
1002 | // next line may end up being less than pi[j] due |
---|
1003 | // to floating point imprecision. |
---|
1004 | if ((tMatches[j] != i) && (pi[j] >= TOL)) { |
---|
1005 | double diff = u[i] + v[j] - weights[i][j]; |
---|
1006 | if (diff < pi[j]) { |
---|
1007 | tLabels[j] = i; |
---|
1008 | pi[j] = diff; |
---|
1009 | if (pi[j] < TOL) { |
---|
1010 | eligibleT.add(new Integer(j)); |
---|
1011 | } |
---|
1012 | } |
---|
1013 | } |
---|
1014 | } |
---|
1015 | } else { |
---|
1016 | int j = ((Integer) eligibleT.get(eligibleT.size() - 1)). |
---|
1017 | intValue(); |
---|
1018 | eligibleT.remove(eligibleT.size() - 1); |
---|
1019 | if (tMatches[j] == -1) { |
---|
1020 | return j; // we've found an augmenting path |
---|
1021 | } |
---|
1022 | |
---|
1023 | int i = tMatches[j]; |
---|
1024 | sLabels[i] = j; |
---|
1025 | eligibleS.add(new Integer(i)); // ok to add twice |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | return -1; |
---|
1030 | } |
---|
1031 | |
---|
1032 | /** |
---|
1033 | * Given an augmenting path ending at lastNode, "flips" the path. This |
---|
1034 | * means that an edge on the path is in the matching after the flip if |
---|
1035 | * and only if it was not in the matching before the flip. An augmenting |
---|
1036 | * path connects two unmatched nodes, so the result is still a matching. |
---|
1037 | */ |
---|
1038 | void flipPath(int lastNode) { |
---|
1039 | while (lastNode != EMPTY_LABEL) { |
---|
1040 | int parent = tLabels[lastNode]; |
---|
1041 | |
---|
1042 | // Add (parent, lastNode) to matching. We don't need to |
---|
1043 | // explicitly remove any edges from the matching because: |
---|
1044 | // * We know at this point that there is no i such that |
---|
1045 | // sMatches[i] = lastNode. |
---|
1046 | // * Although there might be some j such that tMatches[j] = |
---|
1047 | // parent, that j must be sLabels[parent], and will change |
---|
1048 | // tMatches[j] in the next time through this loop. |
---|
1049 | sMatches[parent] = lastNode; |
---|
1050 | tMatches[lastNode] = parent; |
---|
1051 | |
---|
1052 | lastNode = sLabels[parent]; |
---|
1053 | } |
---|
1054 | } |
---|
1055 | |
---|
1056 | void changeDualVars(double delta) { |
---|
1057 | for (int i = 0; i < n; i++) { |
---|
1058 | if (sLabels[i] != NO_LABEL) { |
---|
1059 | u[i] -= delta; |
---|
1060 | } |
---|
1061 | } |
---|
1062 | |
---|
1063 | for (int j = 0; j < m; j++) { |
---|
1064 | if (pi[j] < TOL) { |
---|
1065 | v[j] += delta; |
---|
1066 | } else if (tLabels[j] != NO_LABEL) { |
---|
1067 | pi[j] -= delta; |
---|
1068 | if (pi[j] < TOL) { |
---|
1069 | eligibleT.add(new Integer(j)); |
---|
1070 | } |
---|
1071 | } |
---|
1072 | } |
---|
1073 | } |
---|
1074 | |
---|
1075 | /** |
---|
1076 | * Ensures that all weights are either Double.NEGATIVE_INFINITY, |
---|
1077 | * or strictly greater than zero. |
---|
1078 | */ |
---|
1079 | private void ensurePositiveWeights() { |
---|
1080 | // minWeight is the minimum non-infinite weight |
---|
1081 | if (minWeight < TOL) { |
---|
1082 | for (int i = 0; i < n; i++) { |
---|
1083 | for (int j = 0; j < m; j++) { |
---|
1084 | weights[i][j] = weights[i][j] - minWeight + 1; |
---|
1085 | } |
---|
1086 | } |
---|
1087 | |
---|
1088 | maxWeight = maxWeight - minWeight + 1; |
---|
1089 | minWeight = 1; |
---|
1090 | } |
---|
1091 | } |
---|
1092 | |
---|
1093 | @SuppressWarnings("unused") |
---|
1094 | private void printWeights() { |
---|
1095 | for (int i = 0; i < n; i++) { |
---|
1096 | for (int j = 0; j < m; j++) { |
---|
1097 | System.out.print(weights[i][j] + " "); |
---|
1098 | } |
---|
1099 | System.out.println(""); |
---|
1100 | } |
---|
1101 | } |
---|
1102 | } |
---|
1103 | } |
---|