| 1 | // Copyright 2015 Georg-August-Universit�t G�ttingen, Germany |
|---|
| 2 | // |
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
|---|
| 4 | // you may not use this file except in compliance with the License. |
|---|
| 5 | // You may obtain a copy of the License at |
|---|
| 6 | // |
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
|---|
| 8 | // |
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software |
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|---|
| 12 | // See the License for the specific language governing permissions and |
|---|
| 13 | // limitations under the License. |
|---|
| 14 | |
|---|
| 15 | package de.ugoe.cs.cpdp.training; |
|---|
| 16 | |
|---|
| 17 | import java.util.ArrayList; |
|---|
| 18 | import java.util.Arrays; |
|---|
| 19 | import java.util.Collections; |
|---|
| 20 | import java.util.Comparator; |
|---|
| 21 | import java.util.HashMap; |
|---|
| 22 | import java.util.Iterator; |
|---|
| 23 | import java.util.LinkedHashMap; |
|---|
| 24 | import java.util.LinkedList; |
|---|
| 25 | import java.util.List; |
|---|
| 26 | import java.util.Map; |
|---|
| 27 | import java.util.logging.Level; |
|---|
| 28 | |
|---|
| 29 | import javax.management.RuntimeErrorException; |
|---|
| 30 | |
|---|
| 31 | import java.util.Random; |
|---|
| 32 | |
|---|
| 33 | import org.apache.commons.collections4.list.SetUniqueList; |
|---|
| 34 | import org.apache.commons.math3.stat.inference.ChiSquareTest; |
|---|
| 35 | import org.apache.commons.math3.stat.correlation.SpearmansCorrelation; |
|---|
| 36 | import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest; |
|---|
| 37 | |
|---|
| 38 | import de.ugoe.cs.util.console.Console; |
|---|
| 39 | import weka.attributeSelection.SignificanceAttributeEval; |
|---|
| 40 | import weka.classifiers.AbstractClassifier; |
|---|
| 41 | import weka.classifiers.Classifier; |
|---|
| 42 | import weka.core.Attribute; |
|---|
| 43 | import weka.core.DenseInstance; |
|---|
| 44 | import weka.core.FastVector; |
|---|
| 45 | import weka.core.Instance; |
|---|
| 46 | import weka.core.Instances; |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | public class MetricMatchingTraining extends WekaBaseTraining implements ISetWiseTestdataAwareTrainingStrategy { |
|---|
| 50 | |
|---|
| 51 | private SetUniqueList<Instances> traindataSet; |
|---|
| 52 | private MetricMatch mm; |
|---|
| 53 | private final Classifier classifier = new MetricMatchingClassifier(); |
|---|
| 54 | |
|---|
| 55 | private String method; |
|---|
| 56 | private float threshold; |
|---|
| 57 | |
|---|
| 58 | /** |
|---|
| 59 | * We wrap the classifier here because of classifyInstance |
|---|
| 60 | * @return |
|---|
| 61 | */ |
|---|
| 62 | @Override |
|---|
| 63 | public Classifier getClassifier() { |
|---|
| 64 | return this.classifier; |
|---|
| 65 | } |
|---|
| 66 | |
|---|
| 67 | |
|---|
| 68 | @Override |
|---|
| 69 | public void setMethod(String method) { |
|---|
| 70 | this.method = method; |
|---|
| 71 | } |
|---|
| 72 | |
|---|
| 73 | |
|---|
| 74 | @Override |
|---|
| 75 | public void setThreshold(String threshold) { |
|---|
| 76 | this.threshold = Float.parseFloat(threshold); |
|---|
| 77 | } |
|---|
| 78 | |
|---|
| 79 | /** |
|---|
| 80 | * We need the testdata instances to do a metric matching, so in this special case we get this data |
|---|
| 81 | * before evaluation |
|---|
| 82 | */ |
|---|
| 83 | @Override |
|---|
| 84 | public void apply(SetUniqueList<Instances> traindataSet, Instances testdata) { |
|---|
| 85 | this.traindataSet = traindataSet; |
|---|
| 86 | |
|---|
| 87 | int rank = 0; // we want at least 5 matching attributes |
|---|
| 88 | int num = 0; |
|---|
| 89 | int biggest_num = 0; |
|---|
| 90 | MetricMatch tmp; |
|---|
| 91 | MetricMatch biggest = null; |
|---|
| 92 | for (Instances traindata : this.traindataSet) { |
|---|
| 93 | num++; |
|---|
| 94 | tmp = new MetricMatch(traindata, testdata); |
|---|
| 95 | |
|---|
| 96 | // metric selection may create error, continue to next training set |
|---|
| 97 | try { |
|---|
| 98 | tmp.attributeSelection(); |
|---|
| 99 | }catch(Exception e) { |
|---|
| 100 | e.printStackTrace(); |
|---|
| 101 | throw new RuntimeException(e); |
|---|
| 102 | } |
|---|
| 103 | |
|---|
| 104 | if (this.method.equals("spearman")) { |
|---|
| 105 | tmp.spearmansRankCorrelation(this.threshold); |
|---|
| 106 | } |
|---|
| 107 | else if (this.method.equals("kolmogorov")) { |
|---|
| 108 | tmp.kolmogorovSmirnovTest(this.threshold); |
|---|
| 109 | } |
|---|
| 110 | else { |
|---|
| 111 | throw new RuntimeException("unknown method"); |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | // we only select the training data from our set with the most matching attributes |
|---|
| 115 | if (tmp.getRank() > rank) { |
|---|
| 116 | rank = tmp.getRank(); |
|---|
| 117 | biggest = tmp; |
|---|
| 118 | biggest_num = num; |
|---|
| 119 | } |
|---|
| 120 | } |
|---|
| 121 | |
|---|
| 122 | if (biggest == null) { |
|---|
| 123 | throw new RuntimeException("not enough matching attributes found"); |
|---|
| 124 | } |
|---|
| 125 | |
|---|
| 126 | // we use the best match |
|---|
| 127 | |
|---|
| 128 | this.mm = biggest; |
|---|
| 129 | Instances ilist = this.mm.getMatchedTrain(); |
|---|
| 130 | Console.traceln(Level.INFO, "Chosing the trainingdata set num "+biggest_num +" with " + rank + " matching attributes, " + ilist.size() + " instances out of a possible set of " + traindataSet.size() + " sets"); |
|---|
| 131 | |
|---|
| 132 | // replace traindataSEt |
|---|
| 133 | //traindataSet = new SetUniqueList<Instances>(); |
|---|
| 134 | traindataSet.clear(); |
|---|
| 135 | traindataSet.add(ilist); |
|---|
| 136 | |
|---|
| 137 | // we have to build the classifier here: |
|---|
| 138 | try { |
|---|
| 139 | |
|---|
| 140 | // |
|---|
| 141 | if (this.classifier == null) { |
|---|
| 142 | Console.traceln(Level.SEVERE, "Classifier is null"); |
|---|
| 143 | } |
|---|
| 144 | //Console.traceln(Level.INFO, "Building classifier with the matched training data with " + ilist.size() + " instances and "+ ilist.numAttributes() + " attributes"); |
|---|
| 145 | this.classifier.buildClassifier(ilist); |
|---|
| 146 | ((MetricMatchingClassifier) this.classifier).setMetricMatching(this.mm); |
|---|
| 147 | }catch(Exception e) { |
|---|
| 148 | e.printStackTrace(); |
|---|
| 149 | throw new RuntimeException(e); |
|---|
| 150 | } |
|---|
| 151 | } |
|---|
| 152 | |
|---|
| 153 | |
|---|
| 154 | /** |
|---|
| 155 | * encapsulates the classifier configured with WekaBase |
|---|
| 156 | */ |
|---|
| 157 | public class MetricMatchingClassifier extends AbstractClassifier { |
|---|
| 158 | |
|---|
| 159 | private static final long serialVersionUID = -1342172153473770935L; |
|---|
| 160 | private MetricMatch mm; |
|---|
| 161 | private Classifier classifier; |
|---|
| 162 | |
|---|
| 163 | @Override |
|---|
| 164 | public void buildClassifier(Instances traindata) throws Exception { |
|---|
| 165 | this.classifier = setupClassifier(); // parent method from WekaBase |
|---|
| 166 | this.classifier.buildClassifier(traindata); |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | public void setMetricMatching(MetricMatch mm) { |
|---|
| 170 | this.mm = mm; |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | /** |
|---|
| 174 | * Here we can not do the metric matching because we only get one instance |
|---|
| 175 | */ |
|---|
| 176 | public double classifyInstance(Instance testdata) { |
|---|
| 177 | // todo: maybe we can pull the instance out of our matched testdata? |
|---|
| 178 | Instance ntest = this.mm.getMatchedTestInstance(testdata); |
|---|
| 179 | |
|---|
| 180 | double ret = 0.0; |
|---|
| 181 | try { |
|---|
| 182 | ret = this.classifier.classifyInstance(ntest); |
|---|
| 183 | }catch(Exception e) { |
|---|
| 184 | e.printStackTrace(); |
|---|
| 185 | throw new RuntimeException(e); |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | return ret; |
|---|
| 189 | } |
|---|
| 190 | } |
|---|
| 191 | |
|---|
| 192 | /** |
|---|
| 193 | * Encapsulates MetricMatching on Instances Arrays |
|---|
| 194 | */ |
|---|
| 195 | public class MetricMatch { |
|---|
| 196 | Instances train; |
|---|
| 197 | Instances test; |
|---|
| 198 | |
|---|
| 199 | HashMap<Integer, Integer> attributes = new HashMap<Integer,Integer>(); |
|---|
| 200 | |
|---|
| 201 | ArrayList<double[]> train_values; |
|---|
| 202 | ArrayList<double[]> test_values; |
|---|
| 203 | |
|---|
| 204 | // todo: this constructor does not work |
|---|
| 205 | public MetricMatch() { |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | public MetricMatch(Instances train, Instances test) { |
|---|
| 209 | this.train = new Instances(train); // expensive! but we are dropping the attributes |
|---|
| 210 | this.test = new Instances(test); |
|---|
| 211 | |
|---|
| 212 | // 1. convert metrics of testdata and traindata to later use in test |
|---|
| 213 | this.train_values = new ArrayList<double[]>(); |
|---|
| 214 | for (int i = 0; i < this.train.numAttributes()-1; i++) { |
|---|
| 215 | this.train_values.add(train.attributeToDoubleArray(i)); |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | this.test_values = new ArrayList<double[]>(); |
|---|
| 219 | for (int i=0; i < this.test.numAttributes()-1; i++) { |
|---|
| 220 | this.test_values.add(this.test.attributeToDoubleArray(i)); |
|---|
| 221 | } |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | /** |
|---|
| 225 | * returns the number of matched attributes |
|---|
| 226 | * as a way of scoring traindata sets individually |
|---|
| 227 | * |
|---|
| 228 | * @return |
|---|
| 229 | */ |
|---|
| 230 | public int getRank() { |
|---|
| 231 | return this.attributes.size(); |
|---|
| 232 | } |
|---|
| 233 | |
|---|
| 234 | public int getNumInstances() { |
|---|
| 235 | return this.train_values.get(0).length; |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | public Instance getMatchedTestInstance(Instance test) { |
|---|
| 239 | // create new instance with our matched number of attributes + 1 (the class attribute) |
|---|
| 240 | //Console.traceln(Level.INFO, "getting matched instance"); |
|---|
| 241 | Instances testdata = this.getMatchedTest(); |
|---|
| 242 | |
|---|
| 243 | //Instance ni = new DenseInstance(this.attmatch.size()+1); |
|---|
| 244 | Instance ni = new DenseInstance(this.attributes.size()+1); |
|---|
| 245 | ni.setDataset(testdata); |
|---|
| 246 | |
|---|
| 247 | //Console.traceln(Level.INFO, "Attributes to match: " + this.attmatch.size() + ""); |
|---|
| 248 | |
|---|
| 249 | Iterator it = this.attributes.entrySet().iterator(); |
|---|
| 250 | int j = 0; |
|---|
| 251 | while (it.hasNext()) { |
|---|
| 252 | Map.Entry values = (Map.Entry)it.next(); |
|---|
| 253 | ni.setValue(testdata.attribute(j), test.value((int)values.getValue())); |
|---|
| 254 | j++; |
|---|
| 255 | |
|---|
| 256 | } |
|---|
| 257 | |
|---|
| 258 | ni.setClassValue(test.value(test.classAttribute())); |
|---|
| 259 | |
|---|
| 260 | //System.out.println(ni); |
|---|
| 261 | return ni; |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | /** |
|---|
| 265 | * returns a new instances array with the metric matched training data |
|---|
| 266 | * |
|---|
| 267 | * @return instances |
|---|
| 268 | */ |
|---|
| 269 | public Instances getMatchedTrain() { |
|---|
| 270 | return this.getMatchedInstances("train", this.train); |
|---|
| 271 | } |
|---|
| 272 | |
|---|
| 273 | /** |
|---|
| 274 | * returns a new instances array with the metric matched test data |
|---|
| 275 | * |
|---|
| 276 | * @return instances |
|---|
| 277 | */ |
|---|
| 278 | public Instances getMatchedTest() { |
|---|
| 279 | return this.getMatchedInstances("test", this.test); |
|---|
| 280 | } |
|---|
| 281 | |
|---|
| 282 | // https://weka.wikispaces.com/Programmatic+Use |
|---|
| 283 | private Instances getMatchedInstances(String name, Instances data) { |
|---|
| 284 | // construct our new attributes |
|---|
| 285 | Attribute[] attrs = new Attribute[this.attributes.size()+1]; |
|---|
| 286 | FastVector fwTrain = new FastVector(this.attributes.size()); |
|---|
| 287 | for (int i=0; i < this.attributes.size(); i++) { |
|---|
| 288 | attrs[i] = new Attribute(String.valueOf(i)); |
|---|
| 289 | fwTrain.addElement(attrs[i]); |
|---|
| 290 | } |
|---|
| 291 | // add our ClassAttribute (which is not numeric!) |
|---|
| 292 | ArrayList<String> acl= new ArrayList<String>(); |
|---|
| 293 | acl.add("0"); |
|---|
| 294 | acl.add("1"); |
|---|
| 295 | |
|---|
| 296 | fwTrain.addElement(new Attribute("bug", acl)); |
|---|
| 297 | Instances newTrain = new Instances(name, fwTrain, data.size()); |
|---|
| 298 | newTrain.setClassIndex(newTrain.numAttributes()-1); |
|---|
| 299 | |
|---|
| 300 | for (int i=0; i < data.size(); i++) { |
|---|
| 301 | Instance ni = new DenseInstance(this.attributes.size()+1); |
|---|
| 302 | |
|---|
| 303 | Iterator it = this.attributes.entrySet().iterator(); |
|---|
| 304 | int j = 0; |
|---|
| 305 | while (it.hasNext()) { |
|---|
| 306 | Map.Entry values = (Map.Entry)it.next(); |
|---|
| 307 | int value = (int)values.getValue(); |
|---|
| 308 | |
|---|
| 309 | // key ist traindata |
|---|
| 310 | if (name.equals("train")) { |
|---|
| 311 | value = (int)values.getKey(); |
|---|
| 312 | } |
|---|
| 313 | ni.setValue(newTrain.attribute(j), data.instance(i).value(value)); |
|---|
| 314 | j++; |
|---|
| 315 | } |
|---|
| 316 | ni.setValue(ni.numAttributes()-1, data.instance(i).value(data.classAttribute())); |
|---|
| 317 | |
|---|
| 318 | newTrain.add(ni); |
|---|
| 319 | } |
|---|
| 320 | |
|---|
| 321 | return newTrain; |
|---|
| 322 | } |
|---|
| 323 | |
|---|
| 324 | |
|---|
| 325 | /** |
|---|
| 326 | * performs the attribute selection |
|---|
| 327 | * we perform attribute significance tests and drop attributes |
|---|
| 328 | */ |
|---|
| 329 | public void attributeSelection() throws Exception { |
|---|
| 330 | //Console.traceln(Level.INFO, "Attribute Selection on Training Attributes ("+this.train.numAttributes()+")"); |
|---|
| 331 | this.attributeSelection(this.train); |
|---|
| 332 | //Console.traceln(Level.INFO, "-----"); |
|---|
| 333 | //Console.traceln(Level.INFO, "Attribute Selection on Test Attributes ("+this.test.numAttributes()+")"); |
|---|
| 334 | this.attributeSelection(this.test); |
|---|
| 335 | //Console.traceln(Level.INFO, "-----"); |
|---|
| 336 | } |
|---|
| 337 | |
|---|
| 338 | private void attributeSelection(Instances which) throws Exception { |
|---|
| 339 | // 1. step we have to categorize the attributes |
|---|
| 340 | //http://weka.sourceforge.net/doc.packages/probabilisticSignificanceAE/weka/attributeSelection/SignificanceAttributeEval.html |
|---|
| 341 | |
|---|
| 342 | SignificanceAttributeEval et = new SignificanceAttributeEval(); |
|---|
| 343 | et.buildEvaluator(which); |
|---|
| 344 | //double tmp[] = new double[this.train.numAttributes()]; |
|---|
| 345 | HashMap<String,Double> saeval = new HashMap<String,Double>(); |
|---|
| 346 | // evaluate all training attributes |
|---|
| 347 | // select top 15% of metrics |
|---|
| 348 | for(int i=0; i < which.numAttributes(); i++) { |
|---|
| 349 | if(which.classIndex() != i) { |
|---|
| 350 | saeval.put(which.attribute(i).name(), et.evaluateAttribute(i)); |
|---|
| 351 | } |
|---|
| 352 | //Console.traceln(Level.SEVERE, "Significance Attribute Eval: " + tmp); |
|---|
| 353 | } |
|---|
| 354 | |
|---|
| 355 | HashMap<String, Double> sorted = sortByValues(saeval); |
|---|
| 356 | |
|---|
| 357 | // die letzen 15% wollen wir haben |
|---|
| 358 | float last = ((float)saeval.size() / 100) * 15; |
|---|
| 359 | int drop_first = saeval.size() - (int)last; |
|---|
| 360 | |
|---|
| 361 | //Console.traceln(Level.INFO, "Dropping "+ drop_first + " of " + sorted.size() + " attributes (we only keep the best 15% "+last+")"); |
|---|
| 362 | /* |
|---|
| 363 | Iterator it = sorted.entrySet().iterator(); |
|---|
| 364 | while (it.hasNext()) { |
|---|
| 365 | Map.Entry pair = (Map.Entry)it.next(); |
|---|
| 366 | Console.traceln(Level.INFO, "key: "+(int)pair.getKey()+", value: " + (double)pair.getValue() + ""); |
|---|
| 367 | }*/ |
|---|
| 368 | |
|---|
| 369 | // drop attributes above last |
|---|
| 370 | Iterator it = sorted.entrySet().iterator(); |
|---|
| 371 | while (drop_first > 0) { |
|---|
| 372 | Map.Entry pair = (Map.Entry)it.next(); |
|---|
| 373 | if(which.attribute((String)pair.getKey()).index() != which.classIndex()) { |
|---|
| 374 | |
|---|
| 375 | which.deleteAttributeAt(which.attribute((String)pair.getKey()).index()); |
|---|
| 376 | //Console.traceln(Level.INFO, "dropping attribute: "+ (String)pair.getKey()); |
|---|
| 377 | } |
|---|
| 378 | drop_first-=1; |
|---|
| 379 | |
|---|
| 380 | |
|---|
| 381 | } |
|---|
| 382 | // //Console.traceln(Level.INFO, "Now we have " + which.numAttributes() + " attributes left (incl. class attribute!)"); |
|---|
| 383 | } |
|---|
| 384 | |
|---|
| 385 | |
|---|
| 386 | private HashMap sortByValues(HashMap map) { |
|---|
| 387 | List list = new LinkedList(map.entrySet()); |
|---|
| 388 | |
|---|
| 389 | Collections.sort(list, new Comparator() { |
|---|
| 390 | public int compare(Object o1, Object o2) { |
|---|
| 391 | return ((Comparable) ((Map.Entry) (o1)).getValue()) |
|---|
| 392 | .compareTo(((Map.Entry) (o2)).getValue()); |
|---|
| 393 | } |
|---|
| 394 | }); |
|---|
| 395 | |
|---|
| 396 | |
|---|
| 397 | HashMap sortedHashMap = new LinkedHashMap(); |
|---|
| 398 | for (Iterator it = list.iterator(); it.hasNext();) { |
|---|
| 399 | Map.Entry entry = (Map.Entry) it.next(); |
|---|
| 400 | sortedHashMap.put(entry.getKey(), entry.getValue()); |
|---|
| 401 | } |
|---|
| 402 | return sortedHashMap; |
|---|
| 403 | } |
|---|
| 404 | |
|---|
| 405 | |
|---|
| 406 | /** |
|---|
| 407 | * calculate Spearmans rank correlation coefficient as matching score |
|---|
| 408 | * |
|---|
| 409 | * @param cutoff |
|---|
| 410 | */ |
|---|
| 411 | public void spearmansRankCorrelation(double cutoff) { |
|---|
| 412 | double p = 0; |
|---|
| 413 | SpearmansCorrelation t = new SpearmansCorrelation(); |
|---|
| 414 | |
|---|
| 415 | // size has to be the same so we randomly sample the number of the smaller sample from the big sample |
|---|
| 416 | if (this.train.size() > this.test.size()) { |
|---|
| 417 | this.sample(this.train, this.test, this.train_values); |
|---|
| 418 | }else if (this.test.size() > this.train.size()) { |
|---|
| 419 | this.sample(this.test, this.train, this.test_values); |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | // try out possible attribute combinations |
|---|
| 423 | for (int i=0; i < this.train.numAttributes()-1; i++) { |
|---|
| 424 | for (int j=0; j < this.test.numAttributes()-1; j++) { |
|---|
| 425 | // class attributes are not relevant |
|---|
| 426 | if (this.train.classIndex() == i) { |
|---|
| 427 | continue; |
|---|
| 428 | } |
|---|
| 429 | if (this.test.classIndex() == j) { |
|---|
| 430 | continue; |
|---|
| 431 | } |
|---|
| 432 | |
|---|
| 433 | |
|---|
| 434 | if (!this.attributes.containsKey(i)) { |
|---|
| 435 | p = t.correlation(this.train_values.get(i), this.test_values.get(j)); |
|---|
| 436 | if (p > cutoff) { |
|---|
| 437 | this.attributes.put(i, j); |
|---|
| 438 | } |
|---|
| 439 | } |
|---|
| 440 | } |
|---|
| 441 | } |
|---|
| 442 | } |
|---|
| 443 | |
|---|
| 444 | |
|---|
| 445 | public void sample(Instances bigger, Instances smaller, ArrayList<double[]> values) { |
|---|
| 446 | // we want to at keep the indices we select the same |
|---|
| 447 | int indices_to_draw = smaller.size(); |
|---|
| 448 | ArrayList<Integer> indices = new ArrayList<Integer>(); |
|---|
| 449 | Random rand = new Random(); |
|---|
| 450 | while (indices_to_draw > 0) { |
|---|
| 451 | |
|---|
| 452 | int index = rand.nextInt(bigger.size()-1); |
|---|
| 453 | |
|---|
| 454 | if (!indices.contains(index)) { |
|---|
| 455 | indices.add(index); |
|---|
| 456 | indices_to_draw--; |
|---|
| 457 | } |
|---|
| 458 | } |
|---|
| 459 | |
|---|
| 460 | // now reduce our values to the indices we choose above for every attribute |
|---|
| 461 | for (int att=0; att < bigger.numAttributes()-1; att++) { |
|---|
| 462 | |
|---|
| 463 | // get double for the att |
|---|
| 464 | double[] vals = values.get(att); |
|---|
| 465 | double[] new_vals = new double[indices.size()]; |
|---|
| 466 | |
|---|
| 467 | int i = 0; |
|---|
| 468 | for (Iterator<Integer> it = indices.iterator(); it.hasNext();) { |
|---|
| 469 | new_vals[i] = vals[it.next()]; |
|---|
| 470 | i++; |
|---|
| 471 | } |
|---|
| 472 | |
|---|
| 473 | values.set(att, new_vals); |
|---|
| 474 | } |
|---|
| 475 | } |
|---|
| 476 | |
|---|
| 477 | |
|---|
| 478 | /** |
|---|
| 479 | * We run the kolmogorov-smirnov test on the data from our test an traindata |
|---|
| 480 | * if the p value is above the cutoff we include it in the results |
|---|
| 481 | * p value tends to be 0 when the distributions of the data are significantly different |
|---|
| 482 | * but we want them to be the same |
|---|
| 483 | * |
|---|
| 484 | * @param cutoff |
|---|
| 485 | * @return p-val |
|---|
| 486 | */ |
|---|
| 487 | public void kolmogorovSmirnovTest(double cutoff) { |
|---|
| 488 | double p = 0; |
|---|
| 489 | |
|---|
| 490 | KolmogorovSmirnovTest t = new KolmogorovSmirnovTest(); |
|---|
| 491 | |
|---|
| 492 | // todo: this should be symmetrical we don't have to compare i to j and then j to i |
|---|
| 493 | // todo: this relies on the last attribute being the class, |
|---|
| 494 | //Console.traceln(Level.INFO, "Starting Kolmogorov-Smirnov test for traindata size: " + this.train.size() + " attributes("+this.train.numAttributes()+") and testdata size: " + this.test.size() + " attributes("+this.test.numAttributes()+")"); |
|---|
| 495 | for (int i=0; i < this.train.numAttributes()-1; i++) { |
|---|
| 496 | for ( int j=0; j < this.test.numAttributes()-1; j++) { |
|---|
| 497 | //p = t.kolmogorovSmirnovTest(this.train_values.get(i), this.test_values.get(j)); |
|---|
| 498 | //p = t.kolmogorovSmirnovTest(this.train_values.get(i), this.test_values.get(j)); |
|---|
| 499 | // class attributes are not relevant |
|---|
| 500 | if ( this.train.classIndex() == i ) { |
|---|
| 501 | continue; |
|---|
| 502 | } |
|---|
| 503 | if ( this.test.classIndex() == j ) { |
|---|
| 504 | continue; |
|---|
| 505 | } |
|---|
| 506 | // PRoblem: exactP is forced for small sample sizes and it never finishes |
|---|
| 507 | if (!this.attributes.containsKey(i)) { |
|---|
| 508 | |
|---|
| 509 | // todo: output the values and complain on the math.commons mailinglist |
|---|
| 510 | p = t.kolmogorovSmirnovTest(this.train_values.get(i), this.test_values.get(j)); |
|---|
| 511 | if (p > cutoff) { |
|---|
| 512 | this.attributes.put(i, j); |
|---|
| 513 | } |
|---|
| 514 | } |
|---|
| 515 | } |
|---|
| 516 | } |
|---|
| 517 | |
|---|
| 518 | //Console.traceln(Level.INFO, "Found " + this.attmatch.size() + " matching attributes"); |
|---|
| 519 | } |
|---|
| 520 | } |
|---|
| 521 | } |
|---|