[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
[41] | 2 | // |
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
| 4 | // you may not use this file except in compliance with the License. |
---|
| 5 | // You may obtain a copy of the License at |
---|
| 6 | // |
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
| 8 | // |
---|
| 9 | // Unless required by applicable law or agreed to in writing, software |
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
| 12 | // See the License for the specific language governing permissions and |
---|
| 13 | // limitations under the License. |
---|
| 14 | |
---|
[17] | 15 | package de.ugoe.cs.cpdp.training; |
---|
| 16 | |
---|
| 17 | import java.util.ArrayList; |
---|
| 18 | import java.util.Collections; |
---|
| 19 | import java.util.Comparator; |
---|
| 20 | import java.util.HashMap; |
---|
| 21 | |
---|
| 22 | import weka.core.Instance; |
---|
[23] | 23 | import de.ugoe.cs.cpdp.training.WekaLocalFQTraining.QuadTreePayload; |
---|
[17] | 24 | |
---|
| 25 | /** |
---|
[135] | 26 | * <p> |
---|
| 27 | * QuadTree implementation. |
---|
| 28 | * </p> |
---|
| 29 | * <p> |
---|
| 30 | * QuadTree gets a list of instances and then recursively split them into 4 children For this it |
---|
| 31 | * uses the median of the 2 values x,y. |
---|
| 32 | * </p> |
---|
[17] | 33 | * |
---|
[135] | 34 | * @author Alexander Trautsch |
---|
[17] | 35 | */ |
---|
| 36 | public class QuadTree { |
---|
| 37 | |
---|
[135] | 38 | /** |
---|
| 39 | * 1 parent or null |
---|
| 40 | */ |
---|
[41] | 41 | private QuadTree parent = null; |
---|
[17] | 42 | |
---|
[135] | 43 | /** |
---|
| 44 | * north-west quadrant |
---|
| 45 | */ |
---|
[41] | 46 | private QuadTree child_nw; |
---|
[135] | 47 | |
---|
| 48 | /** |
---|
| 49 | * north-east quadrant |
---|
| 50 | */ |
---|
[41] | 51 | private QuadTree child_ne; |
---|
[135] | 52 | |
---|
| 53 | /** |
---|
| 54 | * south-east quadrant |
---|
| 55 | */ |
---|
[41] | 56 | private QuadTree child_se; |
---|
[135] | 57 | |
---|
| 58 | /** |
---|
| 59 | * south-west quadrant |
---|
| 60 | */ |
---|
[41] | 61 | private QuadTree child_sw; |
---|
[17] | 62 | |
---|
[135] | 63 | /** |
---|
| 64 | * helper list for child quadrant generation |
---|
| 65 | */ |
---|
[41] | 66 | private ArrayList<QuadTree> l = new ArrayList<QuadTree>(); |
---|
[17] | 67 | |
---|
[135] | 68 | /** |
---|
| 69 | * debugging attribute |
---|
| 70 | */ |
---|
[41] | 71 | public int level = 0; |
---|
[17] | 72 | |
---|
[135] | 73 | /** |
---|
| 74 | * size of the quadrant in x-dimension |
---|
| 75 | */ |
---|
[41] | 76 | private double[] x; |
---|
[135] | 77 | |
---|
| 78 | /** |
---|
| 79 | * size of the quadrant in y-dimension |
---|
| 80 | */ |
---|
[41] | 81 | private double[] y; |
---|
[17] | 82 | |
---|
[135] | 83 | /** |
---|
| 84 | * debugging parameter |
---|
| 85 | */ |
---|
[41] | 86 | public static boolean verbose = false; |
---|
[135] | 87 | |
---|
| 88 | /** |
---|
| 89 | * global size of the QuadTree. |
---|
| 90 | */ |
---|
[41] | 91 | public static int size = 0; |
---|
[135] | 92 | |
---|
| 93 | /** |
---|
| 94 | * recursion parameter alpha |
---|
| 95 | */ |
---|
[41] | 96 | public static double alpha = 0; |
---|
[17] | 97 | |
---|
[135] | 98 | /** |
---|
| 99 | * data for each cluster |
---|
| 100 | */ |
---|
[41] | 101 | public static ArrayList<ArrayList<QuadTreePayload<Instance>>> ccluster = |
---|
| 102 | new ArrayList<ArrayList<QuadTreePayload<Instance>>>(); |
---|
| 103 | |
---|
[135] | 104 | /** |
---|
| 105 | * cluster sizes (index is cluster number, {@link ArrayList} is list of boxes (x0,y0,x1,y1 |
---|
| 106 | */ |
---|
[41] | 107 | public static HashMap<Integer, ArrayList<Double[][]>> csize = |
---|
| 108 | new HashMap<Integer, ArrayList<Double[][]>>(); |
---|
| 109 | |
---|
[135] | 110 | /** |
---|
| 111 | * data within this quadrant |
---|
| 112 | */ |
---|
[41] | 113 | private ArrayList<QuadTreePayload<Instance>> payload; |
---|
| 114 | |
---|
[135] | 115 | /** |
---|
| 116 | * <p> |
---|
| 117 | * Constructor. Creates a new QuadTree. |
---|
| 118 | * </p> |
---|
| 119 | * |
---|
| 120 | * @param parent |
---|
| 121 | * parent of this tree |
---|
| 122 | * @param payload |
---|
| 123 | * data within the quadrant |
---|
| 124 | */ |
---|
[41] | 125 | public QuadTree(QuadTree parent, ArrayList<QuadTreePayload<Instance>> payload) { |
---|
| 126 | this.parent = parent; |
---|
| 127 | this.payload = payload; |
---|
| 128 | } |
---|
| 129 | |
---|
[135] | 130 | /* |
---|
| 131 | * (non-Javadoc) |
---|
| 132 | * |
---|
| 133 | * @see java.lang.Object#toString() |
---|
| 134 | */ |
---|
| 135 | @Override |
---|
[41] | 136 | public String toString() { |
---|
| 137 | String n = ""; |
---|
| 138 | if (this.parent == null) { |
---|
| 139 | n += "rootnode "; |
---|
| 140 | } |
---|
| 141 | String level = new String(new char[this.level]).replace("\0", "-"); |
---|
| 142 | n += level + " instances: " + this.getNumbers(); |
---|
| 143 | return n; |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | /** |
---|
[135] | 147 | * <p> |
---|
[41] | 148 | * Returns the payload, used for clustering in the clustering list we only have children with |
---|
[135] | 149 | * payload |
---|
| 150 | * </p> |
---|
[41] | 151 | * |
---|
[135] | 152 | * @return payload the payload |
---|
[41] | 153 | */ |
---|
| 154 | public ArrayList<QuadTreePayload<Instance>> getPayload() { |
---|
| 155 | return this.payload; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /** |
---|
[135] | 159 | * <p> |
---|
| 160 | * Calculate the density of this quadrant as |
---|
| 161 | * <ul> |
---|
| 162 | * <li>density = number of instances / global size (all instances)</li> |
---|
| 163 | * </ul> |
---|
[41] | 164 | * |
---|
[135] | 165 | * @return density the density |
---|
[41] | 166 | */ |
---|
| 167 | public double getDensity() { |
---|
| 168 | double dens = 0; |
---|
| 169 | dens = (double) this.getNumbers() / QuadTree.size; |
---|
| 170 | return dens; |
---|
| 171 | } |
---|
| 172 | |
---|
[135] | 173 | /** |
---|
| 174 | * <p> |
---|
| 175 | * sets the size coordinates of the quadrant |
---|
| 176 | * </p> |
---|
| 177 | * |
---|
| 178 | * @param x |
---|
| 179 | * x-dimension |
---|
| 180 | * @param y |
---|
| 181 | * y-dimension |
---|
| 182 | */ |
---|
[41] | 183 | public void setSize(double[] x, double[] y) { |
---|
| 184 | this.x = x; |
---|
| 185 | this.y = y; |
---|
| 186 | } |
---|
| 187 | |
---|
[135] | 188 | /** |
---|
| 189 | * <p> |
---|
| 190 | * returns the size of the quadrant |
---|
| 191 | * </p> |
---|
| 192 | * |
---|
| 193 | * @return size of the current quadrant |
---|
| 194 | */ |
---|
[41] | 195 | public double[][] getSize() { |
---|
| 196 | return new double[][] |
---|
| 197 | { this.x, this.y }; |
---|
| 198 | } |
---|
| 199 | |
---|
[135] | 200 | /** |
---|
| 201 | * <p> |
---|
| 202 | * returns the size of the quadrant |
---|
| 203 | * </p> |
---|
| 204 | * |
---|
| 205 | * @return size of the current quadrant |
---|
| 206 | */ |
---|
[41] | 207 | public Double[][] getSizeDouble() { |
---|
| 208 | Double[] tmpX = new Double[2]; |
---|
| 209 | Double[] tmpY = new Double[2]; |
---|
| 210 | |
---|
| 211 | tmpX[0] = this.x[0]; |
---|
| 212 | tmpX[1] = this.x[1]; |
---|
| 213 | |
---|
| 214 | tmpY[0] = this.y[0]; |
---|
| 215 | tmpY[1] = this.y[1]; |
---|
| 216 | |
---|
| 217 | return new Double[][] |
---|
| 218 | { tmpX, tmpY }; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | /** |
---|
[135] | 222 | * <p> |
---|
| 223 | * calculates the median for the x axis |
---|
| 224 | * </p> |
---|
[41] | 225 | * |
---|
| 226 | * @return median for x |
---|
| 227 | */ |
---|
| 228 | private double getMedianForX() { |
---|
| 229 | double med_x = 0; |
---|
| 230 | |
---|
| 231 | Collections.sort(this.payload, new Comparator<QuadTreePayload<Instance>>() { |
---|
| 232 | @Override |
---|
| 233 | public int compare(QuadTreePayload<Instance> x1, QuadTreePayload<Instance> x2) { |
---|
| 234 | return Double.compare(x1.x, x2.x); |
---|
| 235 | } |
---|
| 236 | }); |
---|
| 237 | |
---|
| 238 | if (this.payload.size() % 2 == 0) { |
---|
| 239 | int mid = this.payload.size() / 2; |
---|
| 240 | med_x = (this.payload.get(mid).x + this.payload.get(mid + 1).x) / 2; |
---|
| 241 | } |
---|
| 242 | else { |
---|
| 243 | int mid = this.payload.size() / 2; |
---|
| 244 | med_x = this.payload.get(mid).x; |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | if (QuadTree.verbose) { |
---|
| 248 | System.out.println("sorted:"); |
---|
| 249 | for (int i = 0; i < this.payload.size(); i++) { |
---|
| 250 | System.out.print("" + this.payload.get(i).x + ","); |
---|
| 251 | } |
---|
| 252 | System.out.println("median x: " + med_x); |
---|
| 253 | } |
---|
| 254 | return med_x; |
---|
| 255 | } |
---|
| 256 | |
---|
[135] | 257 | /** |
---|
| 258 | * <p> |
---|
| 259 | * calculates the median for the y axis |
---|
| 260 | * </p> |
---|
| 261 | * |
---|
| 262 | * @return median for y |
---|
| 263 | */ |
---|
[41] | 264 | private double getMedianForY() { |
---|
| 265 | double med_y = 0; |
---|
| 266 | |
---|
| 267 | Collections.sort(this.payload, new Comparator<QuadTreePayload<Instance>>() { |
---|
| 268 | @Override |
---|
| 269 | public int compare(QuadTreePayload<Instance> y1, QuadTreePayload<Instance> y2) { |
---|
| 270 | return Double.compare(y1.y, y2.y); |
---|
| 271 | } |
---|
| 272 | }); |
---|
| 273 | |
---|
| 274 | if (this.payload.size() % 2 == 0) { |
---|
| 275 | int mid = this.payload.size() / 2; |
---|
| 276 | med_y = (this.payload.get(mid).y + this.payload.get(mid + 1).y) / 2; |
---|
| 277 | } |
---|
| 278 | else { |
---|
| 279 | int mid = this.payload.size() / 2; |
---|
| 280 | med_y = this.payload.get(mid).y; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | if (QuadTree.verbose) { |
---|
| 284 | System.out.println("sorted:"); |
---|
| 285 | for (int i = 0; i < this.payload.size(); i++) { |
---|
| 286 | System.out.print("" + this.payload.get(i).y + ","); |
---|
| 287 | } |
---|
| 288 | System.out.println("median y: " + med_y); |
---|
| 289 | } |
---|
| 290 | return med_y; |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | /** |
---|
[135] | 294 | * <p> |
---|
| 295 | * Returns the number of instances in the payload |
---|
| 296 | * </p> |
---|
[41] | 297 | * |
---|
[135] | 298 | * @return number of instances |
---|
[41] | 299 | */ |
---|
| 300 | public int getNumbers() { |
---|
| 301 | int number = 0; |
---|
| 302 | if (this.payload != null) { |
---|
| 303 | number = this.payload.size(); |
---|
| 304 | } |
---|
| 305 | return number; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | /** |
---|
[135] | 309 | * <p> |
---|
[41] | 310 | * Calculate median values of payload for x, y and split into 4 sectors |
---|
[135] | 311 | * </p> |
---|
[41] | 312 | * |
---|
| 313 | * @return Array of QuadTree nodes (4 childs) |
---|
| 314 | * @throws Exception |
---|
| 315 | * if we would run into an recursive loop |
---|
| 316 | */ |
---|
| 317 | public QuadTree[] split() throws Exception { |
---|
| 318 | |
---|
| 319 | double medx = this.getMedianForX(); |
---|
| 320 | double medy = this.getMedianForY(); |
---|
| 321 | |
---|
| 322 | // Payload lists for each child |
---|
| 323 | ArrayList<QuadTreePayload<Instance>> nw = new ArrayList<QuadTreePayload<Instance>>(); |
---|
| 324 | ArrayList<QuadTreePayload<Instance>> sw = new ArrayList<QuadTreePayload<Instance>>(); |
---|
| 325 | ArrayList<QuadTreePayload<Instance>> ne = new ArrayList<QuadTreePayload<Instance>>(); |
---|
| 326 | ArrayList<QuadTreePayload<Instance>> se = new ArrayList<QuadTreePayload<Instance>>(); |
---|
| 327 | |
---|
| 328 | // sort the payloads to new payloads |
---|
| 329 | // here we have the problem that payloads with the same values are sorted |
---|
| 330 | // into the same slots and it could happen that medx and medy = size_x[1] and size_y[1] |
---|
| 331 | // in that case we would have an endless loop |
---|
| 332 | for (int i = 0; i < this.payload.size(); i++) { |
---|
| 333 | |
---|
| 334 | QuadTreePayload<Instance> item = this.payload.get(i); |
---|
| 335 | |
---|
| 336 | // north west |
---|
| 337 | if (item.x <= medx && item.y >= medy) { |
---|
| 338 | nw.add(item); |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | // south west |
---|
| 342 | else if (item.x <= medx && item.y <= medy) { |
---|
| 343 | sw.add(item); |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | // north east |
---|
| 347 | else if (item.x >= medx && item.y >= medy) { |
---|
| 348 | ne.add(item); |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | // south east |
---|
| 352 | else if (item.x >= medx && item.y <= medy) { |
---|
| 353 | se.add(item); |
---|
| 354 | } |
---|
| 355 | } |
---|
| 356 | |
---|
| 357 | // if we assign one child a payload equal to our own (see problem above) |
---|
| 358 | // we throw an exceptions which stops the recursion on this node |
---|
| 359 | if (nw.equals(this.payload)) { |
---|
| 360 | throw new Exception("payload equal"); |
---|
| 361 | } |
---|
| 362 | if (sw.equals(this.payload)) { |
---|
| 363 | throw new Exception("payload equal"); |
---|
| 364 | } |
---|
| 365 | if (ne.equals(this.payload)) { |
---|
| 366 | throw new Exception("payload equal"); |
---|
| 367 | } |
---|
| 368 | if (se.equals(this.payload)) { |
---|
| 369 | throw new Exception("payload equal"); |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | this.child_nw = new QuadTree(this, nw); |
---|
| 373 | this.child_nw.setSize(new double[] |
---|
| 374 | { this.x[0], medx }, new double[] |
---|
| 375 | { medy, this.y[1] }); |
---|
| 376 | this.child_nw.level = this.level + 1; |
---|
| 377 | |
---|
| 378 | this.child_sw = new QuadTree(this, sw); |
---|
| 379 | this.child_sw.setSize(new double[] |
---|
| 380 | { this.x[0], medx }, new double[] |
---|
| 381 | { this.y[0], medy }); |
---|
| 382 | this.child_sw.level = this.level + 1; |
---|
| 383 | |
---|
| 384 | this.child_ne = new QuadTree(this, ne); |
---|
| 385 | this.child_ne.setSize(new double[] |
---|
| 386 | { medx, this.x[1] }, new double[] |
---|
| 387 | { medy, this.y[1] }); |
---|
| 388 | this.child_ne.level = this.level + 1; |
---|
| 389 | |
---|
| 390 | this.child_se = new QuadTree(this, se); |
---|
| 391 | this.child_se.setSize(new double[] |
---|
| 392 | { medx, this.x[1] }, new double[] |
---|
| 393 | { this.y[0], medy }); |
---|
| 394 | this.child_se.level = this.level + 1; |
---|
| 395 | |
---|
| 396 | this.payload = null; |
---|
| 397 | return new QuadTree[] |
---|
| 398 | { this.child_nw, this.child_ne, this.child_se, this.child_sw }; |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /** |
---|
[135] | 402 | * <p> |
---|
| 403 | * creates the children of a QuadTree and recursively splits them as well |
---|
| 404 | * </p> |
---|
| 405 | * |
---|
[41] | 406 | * @param q |
---|
[135] | 407 | * tree that is split |
---|
[41] | 408 | */ |
---|
[135] | 409 | public static void recursiveSplit(QuadTree q) { |
---|
[41] | 410 | if (QuadTree.verbose) { |
---|
| 411 | System.out.println("splitting: " + q); |
---|
| 412 | } |
---|
| 413 | if (q.getNumbers() < QuadTree.alpha) { |
---|
| 414 | return; |
---|
| 415 | } |
---|
| 416 | else { |
---|
| 417 | // exception is thrown if we would run into an endless loop (see comments in split()) |
---|
| 418 | try { |
---|
| 419 | QuadTree[] childs = q.split(); |
---|
[135] | 420 | recursiveSplit(childs[0]); |
---|
| 421 | recursiveSplit(childs[1]); |
---|
| 422 | recursiveSplit(childs[2]); |
---|
| 423 | recursiveSplit(childs[3]); |
---|
[41] | 424 | } |
---|
| 425 | catch (Exception e) { |
---|
| 426 | return; |
---|
| 427 | } |
---|
| 428 | } |
---|
| 429 | } |
---|
| 430 | |
---|
| 431 | /** |
---|
[135] | 432 | * <p> |
---|
| 433 | * returns an list of children sorted by density |
---|
| 434 | * </p> |
---|
[41] | 435 | * |
---|
| 436 | * @param q |
---|
| 437 | * QuadTree |
---|
| 438 | */ |
---|
| 439 | private void generateList(QuadTree q) { |
---|
| 440 | |
---|
| 441 | // we only have all childs or none at all |
---|
| 442 | if (q.child_ne == null) { |
---|
| 443 | this.l.add(q); |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | if (q.child_ne != null) { |
---|
| 447 | this.generateList(q.child_ne); |
---|
| 448 | } |
---|
| 449 | if (q.child_nw != null) { |
---|
| 450 | this.generateList(q.child_nw); |
---|
| 451 | } |
---|
| 452 | if (q.child_se != null) { |
---|
| 453 | this.generateList(q.child_se); |
---|
| 454 | } |
---|
| 455 | if (q.child_sw != null) { |
---|
| 456 | this.generateList(q.child_sw); |
---|
| 457 | } |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | /** |
---|
[135] | 461 | * <p> |
---|
[41] | 462 | * Checks if passed QuadTree is neighboring to us |
---|
[135] | 463 | * </p> |
---|
[41] | 464 | * |
---|
| 465 | * @param q |
---|
| 466 | * QuadTree |
---|
| 467 | * @return true if passed QuadTree is a neighbor |
---|
| 468 | */ |
---|
| 469 | public boolean isNeighbour(QuadTree q) { |
---|
| 470 | boolean is_neighbour = false; |
---|
| 471 | |
---|
| 472 | double[][] our_size = this.getSize(); |
---|
| 473 | double[][] new_size = q.getSize(); |
---|
| 474 | |
---|
| 475 | // X is i=0, Y is i=1 |
---|
| 476 | for (int i = 0; i < 2; i++) { |
---|
| 477 | // we are smaller than q |
---|
| 478 | // -------------- q |
---|
| 479 | // ------- we |
---|
| 480 | if (our_size[i][0] >= new_size[i][0] && our_size[i][1] <= new_size[i][1]) { |
---|
| 481 | is_neighbour = true; |
---|
| 482 | } |
---|
| 483 | // we overlap with q at some point |
---|
| 484 | // a) ---------------q |
---|
| 485 | // ----------- we |
---|
| 486 | // b) --------- q |
---|
| 487 | // --------- we |
---|
| 488 | if ((our_size[i][0] >= new_size[i][0] && our_size[i][0] <= new_size[i][1]) || |
---|
| 489 | (our_size[i][1] >= new_size[i][0] && our_size[i][1] <= new_size[i][1])) |
---|
| 490 | { |
---|
| 491 | is_neighbour = true; |
---|
| 492 | } |
---|
| 493 | // we are larger than q |
---|
| 494 | // ---- q |
---|
| 495 | // ---------- we |
---|
| 496 | if (our_size[i][1] >= new_size[i][1] && our_size[i][0] <= new_size[i][0]) { |
---|
| 497 | is_neighbour = true; |
---|
| 498 | } |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | if (is_neighbour && QuadTree.verbose) { |
---|
| 502 | System.out.println(this + " neighbour of: " + q); |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | return is_neighbour; |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | /** |
---|
[135] | 509 | * <p> |
---|
[41] | 510 | * Perform pruning and clustering of the quadtree |
---|
[135] | 511 | * </p> |
---|
| 512 | * <p> |
---|
[41] | 513 | * Pruning according to: Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, |
---|
| 514 | * Forrest Shull, Burak Turhan, Thomas Zimmermann, |
---|
| 515 | * "Local versus Global Lessons for Defect Prediction and Effort Estimation," IEEE Transactions |
---|
| 516 | * on Software Engineering, vol. 39, no. 6, pp. 822-834, June, 2013 |
---|
[135] | 517 | * </p> |
---|
| 518 | * <ol> |
---|
| 519 | * <li>get list of leaf quadrants</li> |
---|
| 520 | * <li>sort by their density</li> |
---|
| 521 | * <li>set stop_rule to 0.5*highest Density in the list</li> |
---|
| 522 | * <li>merge all nodes with a density > stop_rule to the new cluster and remove all from list |
---|
| 523 | * </li> |
---|
| 524 | * <li>repeat</li> |
---|
| 525 | * </ol> |
---|
[41] | 526 | * |
---|
[136] | 527 | * @param list |
---|
[41] | 528 | * List of QuadTree (children only) |
---|
| 529 | */ |
---|
| 530 | public void gridClustering(ArrayList<QuadTree> list) { |
---|
| 531 | |
---|
| 532 | if (list.size() == 0) { |
---|
| 533 | return; |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | double stop_rule; |
---|
| 537 | QuadTree biggest; |
---|
| 538 | QuadTree current; |
---|
| 539 | |
---|
| 540 | // current clusterlist |
---|
| 541 | ArrayList<QuadTreePayload<Instance>> current_cluster; |
---|
| 542 | |
---|
| 543 | // remove list (for removal of items after scanning of the list) |
---|
| 544 | ArrayList<Integer> remove = new ArrayList<Integer>(); |
---|
| 545 | |
---|
| 546 | // 1. find biggest, and add it |
---|
| 547 | biggest = list.get(list.size() - 1); |
---|
| 548 | stop_rule = biggest.getDensity() * 0.5; |
---|
| 549 | |
---|
| 550 | current_cluster = new ArrayList<QuadTreePayload<Instance>>(); |
---|
| 551 | current_cluster.addAll(biggest.getPayload()); |
---|
| 552 | |
---|
| 553 | // remove the biggest because we are starting with it |
---|
| 554 | remove.add(list.size() - 1); |
---|
| 555 | |
---|
| 556 | ArrayList<Double[][]> tmpSize = new ArrayList<Double[][]>(); |
---|
| 557 | tmpSize.add(biggest.getSizeDouble()); |
---|
| 558 | |
---|
| 559 | // check the items for their density |
---|
| 560 | for (int i = list.size() - 1; i >= 0; i--) { |
---|
| 561 | current = list.get(i); |
---|
| 562 | |
---|
| 563 | // 2. find neighbors with correct density |
---|
| 564 | // if density > stop_rule and is_neighbour add to cluster and remove from list |
---|
| 565 | if (current.getDensity() > stop_rule && !current.equals(biggest) && |
---|
| 566 | current.isNeighbour(biggest)) |
---|
| 567 | { |
---|
| 568 | current_cluster.addAll(current.getPayload()); |
---|
| 569 | |
---|
| 570 | // add it to remove list (we cannot remove it inside the loop because it would move |
---|
| 571 | // the index) |
---|
| 572 | remove.add(i); |
---|
| 573 | |
---|
| 574 | // get the size |
---|
| 575 | tmpSize.add(current.getSizeDouble()); |
---|
| 576 | } |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | // 3. remove our removal candidates from the list |
---|
| 580 | for (Integer item : remove) { |
---|
| 581 | list.remove((int) item); |
---|
| 582 | } |
---|
| 583 | |
---|
| 584 | // 4. add to cluster |
---|
| 585 | QuadTree.ccluster.add(current_cluster); |
---|
| 586 | |
---|
| 587 | // 5. add sizes of our current (biggest) this adds a number of sizes (all QuadTree Instances |
---|
| 588 | // belonging to this cluster) |
---|
| 589 | // we need that to classify test instances to a cluster later |
---|
| 590 | Integer cnumber = new Integer(QuadTree.ccluster.size() - 1); |
---|
| 591 | if (QuadTree.csize.containsKey(cnumber) == false) { |
---|
| 592 | QuadTree.csize.put(cnumber, tmpSize); |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | // repeat |
---|
| 596 | this.gridClustering(list); |
---|
| 597 | } |
---|
| 598 | |
---|
[135] | 599 | /** |
---|
| 600 | * <p> |
---|
| 601 | * debugging function that prints information about the QuadTree |
---|
| 602 | * </p> |
---|
| 603 | * |
---|
| 604 | */ |
---|
[41] | 605 | public void printInfo() { |
---|
| 606 | System.out.println("we have " + ccluster.size() + " clusters"); |
---|
| 607 | |
---|
| 608 | for (int i = 0; i < ccluster.size(); i++) { |
---|
| 609 | System.out.println("cluster: " + i + " size: " + ccluster.get(i).size()); |
---|
| 610 | } |
---|
| 611 | } |
---|
| 612 | |
---|
| 613 | /** |
---|
[135] | 614 | * <p> |
---|
[41] | 615 | * Helper Method to get a sorted list (by density) for all children |
---|
[135] | 616 | * </p> |
---|
[41] | 617 | * |
---|
| 618 | * @param q |
---|
| 619 | * QuadTree |
---|
| 620 | * @return Sorted ArrayList of quadtrees |
---|
| 621 | */ |
---|
| 622 | public ArrayList<QuadTree> getList(QuadTree q) { |
---|
| 623 | this.generateList(q); |
---|
| 624 | |
---|
| 625 | Collections.sort(this.l, new Comparator<QuadTree>() { |
---|
| 626 | @Override |
---|
| 627 | public int compare(QuadTree x1, QuadTree x2) { |
---|
| 628 | return Double.compare(x1.getDensity(), x2.getDensity()); |
---|
| 629 | } |
---|
| 630 | }); |
---|
| 631 | |
---|
| 632 | return this.l; |
---|
| 633 | } |
---|
| 634 | } |
---|