1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.io.PrintStream; |
---|
18 | import java.util.HashSet; |
---|
19 | import java.util.LinkedList; |
---|
20 | import java.util.List; |
---|
21 | import java.util.Set; |
---|
22 | |
---|
23 | import org.apache.commons.collections4.list.SetUniqueList; |
---|
24 | import org.apache.commons.io.output.NullOutputStream; |
---|
25 | |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Classifier; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | |
---|
32 | /** |
---|
33 | * Programmatic WekaBaggingTraining |
---|
34 | * |
---|
35 | * first parameter is Trainer Name. second parameter is class name |
---|
36 | * |
---|
37 | * all subsequent parameters are configuration params (for example for trees) Cross Validation |
---|
38 | * params always come last and are prepended with -CVPARAM |
---|
39 | * |
---|
40 | * XML Configurations for Weka Classifiers: |
---|
41 | * |
---|
42 | * <pre> |
---|
43 | * {@code |
---|
44 | * <!-- examples --> |
---|
45 | * <setwisetrainer name="WekaBaggingTraining" param="NaiveBayesBagging weka.classifiers.bayes.NaiveBayes" /> |
---|
46 | * <setwisetrainer name="WekaBaggingTraining" param="LogisticBagging weka.classifiers.functions.Logistic -R 1.0E-8 -M -1" /> |
---|
47 | * } |
---|
48 | * </pre> |
---|
49 | * |
---|
50 | */ |
---|
51 | public class WekaBaggingTraining extends WekaBaseTraining implements ISetWiseTrainingStrategy { |
---|
52 | |
---|
53 | private final TraindatasetBagging classifier = new TraindatasetBagging(); |
---|
54 | |
---|
55 | @Override |
---|
56 | public Classifier getClassifier() { |
---|
57 | return classifier; |
---|
58 | } |
---|
59 | |
---|
60 | @Override |
---|
61 | public void apply(SetUniqueList<Instances> traindataSet) { |
---|
62 | PrintStream errStr = System.err; |
---|
63 | System.setErr(new PrintStream(new NullOutputStream())); |
---|
64 | try { |
---|
65 | classifier.buildClassifier(traindataSet); |
---|
66 | } |
---|
67 | catch (Exception e) { |
---|
68 | throw new RuntimeException(e); |
---|
69 | } |
---|
70 | finally { |
---|
71 | System.setErr(errStr); |
---|
72 | } |
---|
73 | } |
---|
74 | |
---|
75 | public class TraindatasetBagging extends AbstractClassifier { |
---|
76 | |
---|
77 | private static final long serialVersionUID = 1L; |
---|
78 | |
---|
79 | private List<Instances> trainingData = null; |
---|
80 | |
---|
81 | private List<Classifier> classifiers = null; |
---|
82 | |
---|
83 | @Override |
---|
84 | public double classifyInstance(Instance instance) { |
---|
85 | if (classifiers == null) { |
---|
86 | return 0.0; |
---|
87 | } |
---|
88 | |
---|
89 | double classification = 0.0; |
---|
90 | for (int i = 0; i < classifiers.size(); i++) { |
---|
91 | Classifier classifier = classifiers.get(i); |
---|
92 | Instances traindata = trainingData.get(i); |
---|
93 | |
---|
94 | Set<String> attributeNames = new HashSet<>(); |
---|
95 | for (int j = 0; j < traindata.numAttributes(); j++) { |
---|
96 | attributeNames.add(traindata.attribute(j).name()); |
---|
97 | } |
---|
98 | |
---|
99 | double[] values = new double[traindata.numAttributes()]; |
---|
100 | int index = 0; |
---|
101 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
102 | if (attributeNames.contains(instance.attribute(j).name())) { |
---|
103 | values[index] = instance.value(j); |
---|
104 | index++; |
---|
105 | } |
---|
106 | } |
---|
107 | |
---|
108 | Instances tmp = new Instances(traindata); |
---|
109 | tmp.clear(); |
---|
110 | Instance instCopy = new DenseInstance(instance.weight(), values); |
---|
111 | instCopy.setDataset(tmp); |
---|
112 | try { |
---|
113 | classification += classifier.classifyInstance(instCopy); |
---|
114 | } |
---|
115 | catch (Exception e) { |
---|
116 | throw new RuntimeException("bagging classifier could not classify an instance", |
---|
117 | e); |
---|
118 | } |
---|
119 | } |
---|
120 | classification /= classifiers.size(); |
---|
121 | return (classification >= 0.5) ? 1.0 : 0.0; |
---|
122 | } |
---|
123 | |
---|
124 | public void buildClassifier(SetUniqueList<Instances> traindataSet) throws Exception { |
---|
125 | classifiers = new LinkedList<>(); |
---|
126 | trainingData = new LinkedList<>(); |
---|
127 | for (Instances traindata : traindataSet) { |
---|
128 | Classifier classifier = setupClassifier(); |
---|
129 | classifier.buildClassifier(traindata); |
---|
130 | classifiers.add(classifier); |
---|
131 | trainingData.add(new Instances(traindata)); |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | @Override |
---|
136 | public void buildClassifier(Instances traindata) throws Exception { |
---|
137 | classifiers = new LinkedList<>(); |
---|
138 | trainingData = new LinkedList<>(); |
---|
139 | final Classifier classifier = setupClassifier(); |
---|
140 | classifier.buildClassifier(traindata); |
---|
141 | classifiers.add(classifier); |
---|
142 | trainingData.add(new Instances(traindata)); |
---|
143 | } |
---|
144 | } |
---|
145 | } |
---|