1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.util.Arrays; |
---|
18 | import java.util.logging.Level; |
---|
19 | |
---|
20 | import de.ugoe.cs.util.console.Console; |
---|
21 | |
---|
22 | import weka.core.OptionHandler; |
---|
23 | import weka.classifiers.Classifier; |
---|
24 | import weka.classifiers.bayes.BayesNet; |
---|
25 | import weka.classifiers.meta.CVParameterSelection; |
---|
26 | import weka.classifiers.meta.Vote; |
---|
27 | |
---|
28 | /** |
---|
29 | * WekaBaseTraining2 |
---|
30 | * |
---|
31 | * Allows specification of the Weka classifier and its params in the XML experiment configuration. |
---|
32 | * |
---|
33 | * Important conventions of the XML format: Cross Validation params always come last and are |
---|
34 | * prepended with -CVPARAM Example: <trainer name="WekaTraining" |
---|
35 | * param="RandomForestLocal weka.classifiers.trees.RandomForest -CVPARAM I 5 25 5"/> |
---|
36 | */ |
---|
37 | public abstract class WekaBaseTraining implements IWekaCompatibleTrainer { |
---|
38 | |
---|
39 | protected Classifier classifier = null; |
---|
40 | protected String classifierClassName; |
---|
41 | protected String classifierName; |
---|
42 | protected String[] classifierParams; |
---|
43 | |
---|
44 | @Override |
---|
45 | public void setParameter(String parameters) { |
---|
46 | String[] params = parameters.split(" "); |
---|
47 | |
---|
48 | // first part of the params is the classifierName (e.g. SMORBF) |
---|
49 | classifierName = params[0]; |
---|
50 | |
---|
51 | // the following parameters can be copied from weka! |
---|
52 | |
---|
53 | // second param is classifierClassName (e.g. weka.classifiers.functions.SMO) |
---|
54 | classifierClassName = params[1]; |
---|
55 | |
---|
56 | // rest are params to the specified classifier (e.g. -K |
---|
57 | // weka.classifiers.functions.supportVector.RBFKernel) |
---|
58 | classifierParams = Arrays.copyOfRange(params, 2, params.length); |
---|
59 | |
---|
60 | //classifier = setupClassifier(); |
---|
61 | } |
---|
62 | |
---|
63 | @Override |
---|
64 | public Classifier getClassifier() { |
---|
65 | return classifier; |
---|
66 | } |
---|
67 | |
---|
68 | protected Classifier setupClassifier() { |
---|
69 | Classifier cl = null; |
---|
70 | try { |
---|
71 | @SuppressWarnings("rawtypes") |
---|
72 | Class c = Class.forName(classifierClassName); |
---|
73 | Classifier obj = (Classifier) c.newInstance(); |
---|
74 | |
---|
75 | // Filter out -CVPARAM, these are special because they do not belong to the Weka |
---|
76 | // classifier class as parameters |
---|
77 | String[] param = Arrays.copyOf(classifierParams, classifierParams.length); |
---|
78 | String[] cvparam = { }; |
---|
79 | boolean cv = false; |
---|
80 | for (int i = 0; i < classifierParams.length; i++) { |
---|
81 | if (classifierParams[i].equals("-CVPARAM")) { |
---|
82 | // rest of array are cvparam |
---|
83 | cvparam = Arrays.copyOfRange(classifierParams, i + 1, classifierParams.length); |
---|
84 | |
---|
85 | // before this we have normal params |
---|
86 | param = Arrays.copyOfRange(classifierParams, 0, i); |
---|
87 | |
---|
88 | cv = true; |
---|
89 | break; |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | // set classifier params |
---|
94 | ((OptionHandler) obj).setOptions(param); |
---|
95 | cl = obj; |
---|
96 | |
---|
97 | if( cl instanceof Vote ) { |
---|
98 | Vote votingClassifier = (Vote) cl; |
---|
99 | for( Classifier classifier : votingClassifier.getClassifiers() ) { |
---|
100 | if( classifier instanceof BayesNet ) { |
---|
101 | ((BayesNet) classifier).setUseADTree(false); |
---|
102 | } |
---|
103 | } |
---|
104 | } |
---|
105 | // we have cross val params |
---|
106 | // cant check on cvparam.length here, it may not be initialized |
---|
107 | if (cv) { |
---|
108 | final CVParameterSelection ps = new CVParameterSelection(); |
---|
109 | ps.setClassifier(obj); |
---|
110 | ps.setNumFolds(5); |
---|
111 | // ps.addCVParameter("I 5 25 5"); |
---|
112 | for (int i = 1; i < cvparam.length / 4; i++) { |
---|
113 | ps.addCVParameter(Arrays.asList(Arrays.copyOfRange(cvparam, 0, 4 * i)) |
---|
114 | .toString().replaceAll(", ", " ").replaceAll("^\\[|\\]$", "")); |
---|
115 | } |
---|
116 | |
---|
117 | cl = ps; |
---|
118 | } |
---|
119 | |
---|
120 | } |
---|
121 | catch (ClassNotFoundException e) { |
---|
122 | Console.traceln(Level.WARNING, String.format("class not found: %s", e.toString())); |
---|
123 | e.printStackTrace(); |
---|
124 | } |
---|
125 | catch (InstantiationException e) { |
---|
126 | Console.traceln(Level.WARNING, |
---|
127 | String.format("Instantiation Exception: %s", e.toString())); |
---|
128 | e.printStackTrace(); |
---|
129 | } |
---|
130 | catch (IllegalAccessException e) { |
---|
131 | Console.traceln(Level.WARNING, |
---|
132 | String.format("Illegal Access Exception: %s", e.toString())); |
---|
133 | e.printStackTrace(); |
---|
134 | } |
---|
135 | catch (Exception e) { |
---|
136 | Console.traceln(Level.WARNING, String.format("Exception: %s", e.toString())); |
---|
137 | e.printStackTrace(); |
---|
138 | } |
---|
139 | |
---|
140 | return cl; |
---|
141 | } |
---|
142 | |
---|
143 | @Override |
---|
144 | public String getName() { |
---|
145 | return classifierName; |
---|
146 | } |
---|
147 | |
---|
148 | } |
---|