1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.util.LinkedList; |
---|
18 | import java.util.List; |
---|
19 | |
---|
20 | import de.ugoe.cs.cpdp.util.WekaUtils; |
---|
21 | import weka.classifiers.AbstractClassifier; |
---|
22 | import weka.classifiers.Classifier; |
---|
23 | import weka.core.Instance; |
---|
24 | import weka.core.Instances; |
---|
25 | |
---|
26 | |
---|
27 | /** |
---|
28 | * <p> |
---|
29 | * TODO comment |
---|
30 | * </p> |
---|
31 | * |
---|
32 | * @author Steffen Herbold |
---|
33 | */ |
---|
34 | public class WekaLASERTraining extends WekaBaseTraining implements ITrainingStrategy { |
---|
35 | |
---|
36 | private final LASERClassifier internalClassifier = new LASERClassifier(); |
---|
37 | |
---|
38 | @Override |
---|
39 | public Classifier getClassifier() { |
---|
40 | return internalClassifier; |
---|
41 | } |
---|
42 | |
---|
43 | @Override |
---|
44 | public void apply(Instances traindata) { |
---|
45 | try { |
---|
46 | internalClassifier.buildClassifier(traindata); |
---|
47 | } |
---|
48 | catch (Exception e) { |
---|
49 | throw new RuntimeException(e); |
---|
50 | } |
---|
51 | } |
---|
52 | |
---|
53 | public class LASERClassifier extends AbstractClassifier { |
---|
54 | |
---|
55 | private static final long serialVersionUID = 1L; |
---|
56 | |
---|
57 | private Classifier laserClassifier = null; |
---|
58 | private Instances traindata = null; |
---|
59 | |
---|
60 | @Override |
---|
61 | public double classifyInstance(Instance instance) throws Exception { |
---|
62 | List<Integer> closestInstances = new LinkedList<>(); |
---|
63 | double minDistance = Double.MAX_VALUE; |
---|
64 | for( int i=0; i<traindata.size(); i++ ) { |
---|
65 | double distance = WekaUtils.hammingDistance(instance, traindata.get(i)); |
---|
66 | if( distance<minDistance) { |
---|
67 | minDistance = distance; |
---|
68 | } |
---|
69 | } |
---|
70 | for( int i=0; i<traindata.size(); i++ ) { |
---|
71 | double distance = WekaUtils.hammingDistance(instance, traindata.get(i)); |
---|
72 | if( distance<=minDistance ) { |
---|
73 | closestInstances.add(i); |
---|
74 | } |
---|
75 | } |
---|
76 | if( closestInstances.size()==1 ) { |
---|
77 | int closestIndex = closestInstances.get(0); |
---|
78 | Instance closestTrainingInstance = traindata.get(closestIndex); |
---|
79 | List<Integer> closestToTrainingInstance = new LinkedList<>(); |
---|
80 | double minTrainingDistance = Double.MAX_VALUE; |
---|
81 | for( int i=0; i<traindata.size(); i++ ) { |
---|
82 | if( closestIndex!=i ) { |
---|
83 | double distance = WekaUtils.hammingDistance(closestTrainingInstance, traindata.get(i)); |
---|
84 | if( distance<minTrainingDistance ) { |
---|
85 | minTrainingDistance = distance; |
---|
86 | } |
---|
87 | } |
---|
88 | } |
---|
89 | for( int i=0; i<traindata.size(); i++ ) { |
---|
90 | if( closestIndex!=i ) { |
---|
91 | double distance = WekaUtils.hammingDistance(closestTrainingInstance, traindata.get(i)); |
---|
92 | if( distance<=minTrainingDistance ) { |
---|
93 | closestToTrainingInstance.add(i); |
---|
94 | } |
---|
95 | } |
---|
96 | } |
---|
97 | if( closestToTrainingInstance.size()==1 ) { |
---|
98 | return laserClassifier.classifyInstance(instance); |
---|
99 | } |
---|
100 | else { |
---|
101 | double label = Double.NaN; |
---|
102 | boolean allEqual = true; |
---|
103 | for( Integer index : closestToTrainingInstance ) { |
---|
104 | if( Double.isNaN(label) ) { |
---|
105 | label = traindata.get(index).classValue(); |
---|
106 | } |
---|
107 | else if( label!=traindata.get(index).classValue() ) { |
---|
108 | allEqual = false; |
---|
109 | break; |
---|
110 | } |
---|
111 | } |
---|
112 | if( allEqual ) { |
---|
113 | return label; |
---|
114 | } |
---|
115 | else { |
---|
116 | return laserClassifier.classifyInstance(instance); |
---|
117 | } |
---|
118 | } |
---|
119 | } else { |
---|
120 | double label = Double.NaN; |
---|
121 | boolean allEqual = true; |
---|
122 | for( Integer index : closestInstances ) { |
---|
123 | if( Double.isNaN(label) ) { |
---|
124 | label = traindata.get(index).classValue(); |
---|
125 | } |
---|
126 | else if( label!=traindata.get(index).classValue() ) { |
---|
127 | allEqual = false; |
---|
128 | break; |
---|
129 | } |
---|
130 | } |
---|
131 | if( allEqual ) { |
---|
132 | return label; |
---|
133 | } |
---|
134 | else { |
---|
135 | return laserClassifier.classifyInstance(instance); |
---|
136 | } |
---|
137 | } |
---|
138 | } |
---|
139 | |
---|
140 | @Override |
---|
141 | public void buildClassifier(Instances traindata) throws Exception { |
---|
142 | this.traindata = new Instances(traindata); |
---|
143 | laserClassifier = setupClassifier(); |
---|
144 | laserClassifier.buildClassifier(traindata); |
---|
145 | } |
---|
146 | } |
---|
147 | } |
---|